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A B S T R A C T

This paper explores a range of simple models to study the relationship between global temperature anomalies
and climate forcings. In particular, we consider quantile regression models with potentially time-varying
parameters (TVP), implemented by Bayesian methods. In its most general specification, this approach is flexible
in that it models distinct regions of distribution of global temperature anomalies, while also allowing us to
investigate changes in the relationship between (natural and anthropogenic) climate forcings and temperatures.
Our results indicate that there is indeed considerable variation over time in the relationship between
temperatures and its drivers, and that these effects may be heterogeneous across different quantiles. We then
perform a long-range forecasting exercise for temperatures, which suggests that incorporating TVP or explicitly
modelling quantile levels or the combination of both features can improve prediction for different parts of
the temperature distribution. In addition, we produce forecasts for 2030 considering the intermediate RCP
4.5 scenario: given that no single specification dominates, we account for model uncertainty by considering
forecast averaging across all specifications. Our approach allows us to make statements about the probability
of temperature levels — for instance, we find that a scenario of +1.8 ◦C will occur with a non-negligible
probability under RCP 4.5.
1. Introduction

Predicting the evolution of temperatures over the next decades is a
crucial component in devising strategies to mitigate climate change. It
is therefore of primary importance to develop models that are useful
for forecasting not only mean temperatures, but also realizations orig-
inating from the tails of the distribution of temperatures. Moreover,
it is critical to capture changes in the relationship between climate
forcings, in particular greenhouse gases (GHG), and temperatures, as
these are likely to determine the degree of urgency of different policy
interventions (see Tol, 2005).

This paper contributes to this debate by illustrating the usefulness of
a range of models that have the ability to capture variation over time
and across different regions of the distribution of global temperature
anomalies, and thus have the potential to improve the prediction of
‘‘risky’’ temperatures. As a benchmark specification, we use the dis-
tributed lag model of Castruccio et al. (2014), in which temperatures
are expressed as a function of current and lagged CO2 levels, and
explore how it can be extended along a number of dimensions, namely
by introducing additional forcings and allowing their effects to vary
over time and across quantiles of the distribution of temperatures.

∗ Corresponding author.
E-mail address: vgabriel@uvic.ca (V.J. Gabriel).

Our approach is an eminently statistical/econometric one: we as-
sume our model imperfectly captures the dynamics of global temper-
atures, we use data to fit the parameters of our model according to
some loss function and, having estimated the model, we construct
data-based, ‘‘single-run’’ forecasts for the variable of interest. This
contrasts with the standard practice in climate science, in which models
represent the physical understanding of the climate system, which are
then simulated to produce projections. Roughly put, global uncertainty
arises from both model and parameter uncertainties, but also from
initial conditions used in the simulated runs, which may lead to dramat-
ically distinct projections. Hence, models are run several times and the
collection (‘‘ensemble’’) of these runs is taken to represent the statistical
properties of the climate system.

Our paper is thus related to the literature on climate sensitivity
and transient climate response to cumulative CO2 emissions (TCRE),
as it directly relates (linearly) CO2 emissions and changes in global
temperatures, which suggests the crucial role emissions have for the
development of mitigation policies (see Matthews et al., 2009 and,
more recently, Matthews et al., 2018, for example). Several papers
try to quantify the uncertainty around the timing and magnitude of
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warming (see Ricke and Caldeira, 2014 or, more recently, Spafford and
MacDougall, 2020), with a few papers using observational data to ‘‘con-
strain’’ those uncertainties (Matthews et al., 2009, Gillett et al., 2013.
Our approach is largely data-driven, noting that while our ‘‘reduced-
form’’ specifications contain the main ingredients of climate forcings,
they lack the layers of theoretical structure that underpin climate
models. However, to the best of our knowledge, this literature has
not considered time-varying effects of climate forcings across different
quantiles of the distribution of temperatures.

Our paper is further grounded on a substantial body of the climate
econometrics literature focusing on the analysis of the statistical fea-
tures of historical time series of temperatures, namely whether or not
these contain stochastic trends or are best described as evolving along
broken (deterministic) trends (see Kaufmann et al., 2013; Estrada and
Perron, 2017 or, more recently, Chang et al., 2020 among many oth-
ers). The correct determination of the time series properties of global
temperatures is key to detect and explain the causes of climate change
through appropriate (formal) statistical procedures. Furthermore, there
is substantial evidence that the relationship between temperatures and
radiative forcing, as well as GHG, may have changed over time. An
example of this is the ‘‘hiatus’’ in global warming, a period between
1998 and 2013, in which the warming trend dips while GHG levels
continued to increase. Several papers offer a variety of explanations for
this phenomenon, see Pretis et al. (2015) and Miller and Nam (2020),
for example.

The focus of much of the previous literature has been on the evolu-
tion of average global temperatures and, occasionally, their volatility.
In this paper, we propose to analyse the evolution of the conditional
distribution of global temperatures by specifying quantile regression
models with time-varying parameters (TVP-QR) as in Korobilis et al.
(2021). This approach is flexible in that it allows us to investigate
potential differences in the effects of climate forcings on temperatures
across different regions of the distribution, with a particular focus on
‘‘tail’’ temperatures. Moreover, by adopting a TVP framework, we can
capture the changes over time in the relationship between global tem-
peratures and their distinct forcings that have been widely documented
in the literature.

Estimation of the TVP-QR models is implemented via Bayesian
methods: we make use of the efficient Gibbs sampler developed by Ko-
robilis et al. (2021), which overcomes several challenges in implement-
ing such a richly parameterized framework. The aforementioned work,
borrows ideas from Korobilis (2021) and transforms the TVP quantile
regression into an equivalent high-dimensional regression form, result-
ing in a computationally simple procedure whereby the TVP-QR model
is estimated over a fine grid of quantiles.

Furthermore, generating forecasts in this setup is quite straight-
forward. Little is known about whether temperature forecasts can
be further improved by bringing together the benefits of TVPs with
the flexibility of the QR setting. Therefore, we perform a long-range
forecasting exercise for temperatures, which suggests that quantile
regressions and/or incorporating TVPs lead to good prediction per-
formance, specifically for downside and upside risk for temperature
anomalies.

An additional contribution of our work is to propose a forecast
averaging approach, whereby we use the predictive likelihood (PL,
see Geweke and Amisano, 2010) from the previous forecasting exer-
cise as a criterion to generate weights to combine forecasts from our
suite of models. An averaging approach, by taking into account model
uncertainty, allows us to produce robust forecasts. Moreover, using
the PL measure, which captures the whole distribution, is particularly
appropriate in our framework, given that we are interested in forecast-
ing temperatures for a range of different quantiles. In particular, we
construct conditional forecasts under the intermediate stabilization sce-
nario given by the Representative Concentration Pathway (RCP) 4.5.1

1 RCPs provide consistent projections for radiative forcings to produce
lternative warming scenarios — RCP 4.5 is an intermediate scenario, with
2
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Indeed, both the predictive distributions under the current emission
realizations and those imposed by the alternative RCP 4.5 scenario,
show that reaching temperatures higher than 1.8 ◦C will occur with
probability greater than 70%.

Note that our approach is distinct from recent studies that consider
the spatial heterogeneity of temperatures. Recently, Chang et al. (2020)
focus on the time series characteristics of temperature anomaly distri-
butions, concluding that these contain stochastic trends that differ over
hemispheres and that the probability of experiencing positive anoma-
lies has increased, consistent with anthropogenically-driven climate
change. On the other hand, Gadea Rivas and Gonzalo (2020) study
the distributional characteristics of temperatures (such as different
moments and quantiles) over time. They detect a trend along both the
time series and cross-section dimensions, particularly for lower quan-
tiles, which is also confirmed by a decrease in dispersion, with lower
temperatures approaching the median faster than higher temperatures.2

Our goal is different: we treat global temperatures as a ‘‘target’’
indicator (in the same way as GDP or inflation rates summarize infor-
mation about aggregate economic activity) and we focus on the risk
of extreme realizations of temperatures, emanating from the tails of its
distribution. Therefore, our setup allows us to highlight the importance
of asymmetric behaviour in global temperatures, by allowing their
determinants to vary across different quantiles and over time. Indeed,
we document the increasing impact of several anthropogenic forcings
on temperatures: for instance, cumulative CO2 emissions have an asym-
metric and stronger impact on the tails of temperature anomalies, while
also having a growing effect through time. Meanwhile the magnitude
of the impact of greenhouse gases has increased more substantially in
the lower tail, rather than in the upper tail. These findings are consis-
tent with recent results from climate models, suggesting that forcings
other than CO2 may be driving extreme weather events (e.g., Wang
et al., 2023 and Larson and Portmann, 2019). An implication is that
reductions in anthropogenic forcings have the potential not only to
stymie climate change, but also prevent the persistent (re)occurrence
of extreme temperatures.

Our work also complements that of Agliardi et al. (2019), who
study the relationship between GHG emissions and global warming
with multi-level rolling techniques and model tail events by means
of copulas. While they do not find an acceleration of the effects of
emissions on temperature anomalies, they observe positive upper tail
dependence, i.e., high probabilities of joint extreme large values for
temperatures and emission concentrations.

The paper is organized as follows. Section 2 provides an overview of
the data and a brief description of our benchmark model and the TVP-
QR methodology. In Section 3 we carry out a forecasting comparison
exercise using a range of models nested within the TVP-QR framework
and proceed to study the implications of time variation across the full
distribution. Section 4 concludes.

2. Methodology

2.1. Data description

Data for global temperatures (anomalies relative to the 1986–2005
base period) comes from Berkeley Earth, which averages raw gridded
temperatures and bias-corrected station data.3 We experiment with

‘‘medium levels’’ of effort to curb emissions, leading to an average increased
warming of 1.8 ◦C relative to 1986–2005.

2 See also Ballester et al. (2010), Donat and Alexander (2012), Castruccio
nd Stein (2013), Castruccio et al. (2014) and Leeds et al. (2015) for other
patio-temporal approaches to climate modelling.

3 We follow the convention in the literature of working with anomalies
elative to a base period, which casts into sharp relief ongoing increases in

emperatures in recent decades.
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Table 1
Climate variables.

Variable Full description Unit Source

Temp Global temperature anomalies ◦C Berkeley Earth
CO2 Carbon dioxide emissions ppm Global Carbon Budget
𝐺𝐻𝐺 Greenhouse gases W∕m2 NASA’s GISS
𝑊𝑀𝐺𝐻𝐺 Well-mixed greenhouse gases W∕m2 NASA’s GISS
CH4 Methane emissions ppb NASA’s GISS
N2O Nitrous Oxide ppb NASA’s GISS
𝐴𝑁 Aero Naturals W∕m2 NASA’s
𝐴𝑆 Aerosols W∕m2 NASA’s
𝐴𝑀𝑂 Atlantic Multidecadal Oscillation Index NOAA
𝑆𝑜𝑙𝑎𝑟 Solar Irradiance No. of sunspots Royal Observatory of Belgium

Notes: ◦C denotes degrees Celsius, ppp is parts per million, ppb is parts per billion, W∕m2 is watts per square metre, NASA
is the National Aeronautics and Space Agency, GISS stands for Goddard Institute for Space Studies, NOAA is the National
Oceanic and Atmospheric Administration.
both land only temperatures (which runs from 1750 to present), as well
as averaged land and HadSST (Hadley Centre Sea Surface Temperature
dataset) ocean global temperatures, starting in 1850.4 As for forcing
variables, we consider both annual aggregate and disaggregated GHG
emissions concentration data: in addition to carbon dioxide (CO2, ppm)
present in our baseline specification, we also take into account the role
of methane (CH4, ppb), nitrous oxide (N2O, ppb), as well as other well-
mixed greenhouse gases (𝑊𝑀𝐺𝐻𝐺, such as CFCs, HFCs and PFCs)
– see the CMIP6 (Coupled Model Intercomparisons Project) climate
model simulations of Miller et al. (2021) for sources and further details.
We also consider the role of anthropogenic and natural aerosols (as
used by Miller et al., 2021 in their CMIP6 simulations and sourced
from NASA’s GISS), as well as Solar Radiance (sunspot numbers from
the Royal Observatory of Belgium) and the Atlantic Multidecadal Os-
cillation (AMO, an index based on the Kaplan Extended SST v2 dataset,
available from NOAA).

Although data for several series is available from the 1750s, our
sample period starts in 1856, the earliest available data for all the forc-
ings described above, and goes up until 2020, such that the total sample
size is 𝑇 = 165. Fig. 1 plots the observed time series for temperatures
and CO2 emissions (in a scale of 10−10), showing the increasing trend of
CO2 emissions and growing temperature levels. Cursory inspection also
suggests that the range of variation in temperatures has compressed
in the last few decades, with the lowest temperatures rising more
quickly than higher temperatures, a fact documented in Gadea Rivas
and Gonzalo (2020). This pattern indicates that modelling different
temperature’s quantiles, including a specification where parameters
may change over time, may be appropriate. Furthermore, as shown in
Fig. 2, a similar behaviour and relationship seems to hold for several
other climate forcings, including methane and nitrous oxide.

2.2. Benchmark model

As mentioned above, the purpose of this paper is to explore spec-
ifications that allow us to capture potential variation in the effects of
climate forcings (in particular 𝐺𝐻𝐺 emissions) on temperature anoma-
lies, both over time and across different regions of its distribution. Let
𝑔𝑡 denote the scalar observation of global temperatures in time periods
𝑡 = 1,… , 𝑇 and 𝒙𝑡 a 𝑝-dimensional vector that includes an intercept,
lags of temperatures and a range of climate forcings (described in
Section 3), such that 𝑔𝑡 = 𝑓 (𝑔𝑡|𝒙𝑡) + 𝜀𝑡, where 𝑓 (.) is the conditional
mean and 𝜀𝑡 is a possibly autocorrelated error term.

To illustrate our point, we take the empirical model of Castruccio
et al. (2014) as our baseline, in which temperatures are driven by past
and present (log) CO2 levels, as well as cumulative emissions:

𝑔𝑡 = 𝛽0 + 𝛽1
1
2
(log𝐶𝑂2𝑡 + log𝐶𝑂2𝑡−1 ) + 𝛽2

∞
∑

𝑖=2
𝑤𝑖 log𝐶𝑂2𝑡−𝑖 + 𝜀𝑡, (1)

4 Results are qualitatively similar, here we report estimates based on the
first dataset (see Table 1). We have also experimented with NASA’s GISTEMP
v4 (GISS Temperature Analysis), but again the results were very similar.
3

Fig. 1. Temperatures and CO2 emissions over the sample period.

where 𝑤𝑖 denotes exponentially decaying weights such that 𝑤𝑖 =
𝜔−2(1 − 𝜔)𝜔𝑖, with 0 < 𝜔 < 1.5 Our implementation of (1) is flexible
and differs from that of Agliardi et al. (2019): rather than specifying
an ARMA process for 𝜖𝑡, we opt to capture any omitted dynamics
by including lags of temperatures — we find that in most instances
adding two relevant lags of temperature delivers uncorrelated residuals.
Therefore, here on out the benchmark model refers to the following
specification:

𝑔𝑡 = 𝛽0 + 𝛽1𝑔𝑡−1 + 𝛽2𝑔𝑡−4 + 𝛽3
1
2
(log𝐶𝑂2𝑡 + log𝐶𝑂2𝑡−1 )

+𝛽4
∞
∑

𝑖=2
𝑤𝑖 log𝐶𝑂2𝑡−𝑖 + 𝜀𝑡,

𝑔𝑡 = 𝑓 (𝑔𝑡−1, 𝐶𝑂2𝑡−1 ). (2)

2.3. Quantile regressions with time-varying parameters

The specification in (1) is concerned with the mean of temperature
anomalies, and in that case the dependence between 𝑔𝑡 and 𝒙𝑡 would
be modelled using the following equation:

𝑔𝑡 = 𝑓 (𝑔𝑡|𝒙𝑡) + 𝜀𝑡, (3)

5 While it would be interesting to allow the decay factor 𝜔 to be estimated,
for the sake of simplicity we follow (Castruccio et al., 2014) and Agliardi et al.
(2019) in calibrating 𝜔 to sensible values over the interval (0, 1), with little
overall impact in the results.
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Fig. 2. Climate forcings over the sample period.
where the function 𝑓 (𝑦𝑡|𝒙𝑡) = E(𝑦𝑡|𝒙𝑡) = 𝒙𝑡𝛽 and the solution is given
by:

𝛽 = min
𝛽

E
𝑇
∑

𝑡=1
(𝑦𝑡 − 𝒙𝑡𝛽)2, (4)

However, it would also be of interest to consider the behaviour of
different regions of the distribution of 𝑔𝑡 conditional on the forcings in
𝒙𝑡. Therefore, in this case 𝑓 (𝑦𝑡|𝒙𝑡) = 𝜏 (𝑦𝑡|𝒙𝑡) = 𝒙𝑡𝛽(𝜏) gives the linear
quantile regression (QR) model, 𝜏 = 𝜏1, 𝜏2,… , 𝜏𝑛, with solution

𝛽(𝜏) = min
𝛽(𝜏)

E
𝑇
∑

𝑡=1
𝐿𝜏 (𝑦𝑡 − 𝒙𝑡𝛽(𝜏)), (5)

where 𝐿𝜏 (𝑢) = (𝜏 − I(𝑢 < 0))𝑢 is an asymmetric loss function.
In addition to attempting to analyse the complete distribution,

one would also wish to account for the fact that the effects of the
climate forcings may not be constant over time and therefore we con-
sider quantile regression models with possibly time-varying parameters
— here we follow closely the exposition in Korobilis et al. (2021)
which make use of Bayesian methods to estimate such parameters.
The goal is to trace the full conditional distribution of 𝑔𝑡, which is
achieved through the following model for each of its quantiles, say
𝜏 = {0.05, 0.10,… , 0.90, 0.95},

𝑔𝑡 = 𝜏
(

𝑔𝑡|𝒙𝑡
)

+ 𝜀𝑡, (6)

with 𝜏 denoting the conditional quantile function of the 𝜏-th quantile
of 𝑔𝑡. In particular, we focus on the function

𝜏
(

𝑔𝑡|𝒙𝑡
)

= 𝒙𝑡𝜷𝑡(𝜏), (7)

𝜷𝑡(𝜏) = 𝜷𝑡−1(𝜏) + 𝒗𝑡, (8)

such that 𝒗𝑡 ∼ 𝑁𝑝
(

𝟎,𝑽 𝑡(𝜏)
)

is a state error with covariance matrix
𝑽 𝑡(𝜏). In this specification, parameters evolve as random walks, which
allows for flexibility in that the evolution of 𝜷 can be smooth for small
𝑽 𝑡(𝜏), or it can capture sudden shifts for large values of 𝑽 𝑡(𝜏). Details
regarding the proposed methodology can be found in the technical
appendix, Section 5.

The flexible specification introduced above will be used in order to
produce ℎ-step ahead forecasts in a rolling estimation window for the
temperature anomalies, with a variety of competing models. These will
include mean regression and quantile regression models by minimizing
4

the appropriate loss function mentioned before, as well as constant and
time variant parameter alternatives, as outlined in Section 3.6,7,8,9

3. Empirical analysis

3.1. TVP-QR estimation results

As mentioned in Section 2, visual inspection of how temperatures
and climate forcings are evolving hint at a non-constant distribution of
temperatures across the sample. Such a suspicion is in fact supported
by Fig. 3, which illustrates the 5th, 50th and 95th conditional quantiles
estimated by the quantile model variation of the benchmark model,
with constant parameters. It is clear that the distribution has become
narrower over time, with the lower tail of the distribution exhibiting
a larger increase than the upper tail. Furthermore, the distribution
appears to have shifted from being left-skewed to a more symmetric,
and now rather right-skewed, distribution. Indeed, comparing quantile
estimates with mean estimates as shown in Table 2 for the benchmark
model, it is apparent that different forcings exhibit asymmetries in
their impact on temperature anomalies. For example, even though past
temperatures have an increasing impact as we move to the upper
tails of the distribution (i.e., higher persistence in conditionally higher
versus lower temperature anomalies), the impact of cumulative CO2
emissions is considerably higher on the tails than around the centre of
the temperature distribution. This is a fact that would not be captured
by conventional mean regression models and, therefore, focusing only
on the study of the average relationship between emissions and tem-
peratures may be neglecting differential impacts which can be highly
relevant for policy purposes.

Furthermore, if one focuses on the upper tail of the distribution
(i.e., 𝜏 = 0.95), which is often thought to be of an increased public
interest, estimation of the TVP-QR specification of the benchmark

6 Mean regression models refer to solving Eq. (4), instead of Eq. (5) and
therefore 𝜷 𝑡(𝜏) = 𝜷 𝑡.

7 The solution 𝑽 𝑡(𝜏) = 0 is what allows the constant parameter case to be
a special case of the TVP specification and implies that 𝜷 𝑡(𝜏) = 𝜷 𝑡−1(𝜏).

8 An alternative model, with a time-varying intercept but constant param-
eters for the remainder of regressors (TVI) can also be obtained under the
general specification.

9 We conduct a small Monte Carlo exercise that confirms the ability of the
TVP specification to capture effectively both the time-varying and the constant
parameter cases — results are available upon request.



Energy Economics 131 (2024) 107286A. Phella et al.
Fig. 3. Conditional quantiles of temperature anomalies based on the CP-QR variation of the benchmark model.
Fig. 4. Posterior estimates of the benchmark model for the 95th quantile, estimated by a constant parameter quantile regression, a time-varying intercept only alternative and a
full time-varying parameter specification (including one standard deviation confidence bands), along with the OLS estimate.
Table 2
OLS versus quantile estimates for the benchmark model.

OLS CP-QR (𝜏 = 0.05) CP-QR (𝜏 = 0.50) CP-QR (𝜏 = 0.95)

Intercept 0.0559 −0.2638 0.0470 0.3475
Temperature Lag 1 0.1653 0.0812 0.1392 0.2134
Temperature Lag 4 0.1112 0.1479 0.1407 0.0581
Current CO2 Emissions −0.0820 0.0121 0.0116 0.0558
Past CO2 Emissions 0.1794 0.0886 0.0998 0.0241
Cumulative CO2 Emissions 0.1574 0.2062 0.1391 0.2000

Notes: QR denotes ‘‘quantile regression’’, while CP indicates ‘‘constant parameters’’. Benchmark model refers to the specification shown in Eq. (2).
model in (12) enables us to explore not only the non-linearities present,
but also the evolution of such effects. As it is evident in Fig. 4,
we see that the effect of each of those variable changes over time,
with distinctively different behaviour particularly over the end of the
sample. Of great relevance is the fact that the effect of anthropogenic
forcings such as CO2, in cumulative form, has seen a structural break
around the 1950s and has then steadily increased over the sample
period, while it has now appeared to have reached a plateau. On the
other hand, if one takes a look at a model that includes all climate
forcings (e.g., see Fig. 10 in Appendix), well-mixed greenhouse gases
5

also appear to exhibit similar behaviour (albeit with different timings),
while the impact of solar radiance seems to be driven by a very low-
frequency cycle. Naturally, such features cannot be captured by models
which do not allow for time-varying parameters. It is natural therefore
to incorporate such features in forecasting exercises, as we attempt to
do in the next section.

Our results, based on statistical data-driven models, are nevertheless
in line with those found in the literature on transient climate response
to cumulative CO2 emissions (Matthews et al., 2009, Gillett et al., 2013
and, more recently, Spafford and MacDougall, 2020). Using simulations
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from coupled climate–carbon models, they show a nearly linear rela-
tionship between temperature change and cumulative emissions. This
almost constant climate carbon response (CCR) follows from a tem-
perature change per unit change in atmospheric carbon that increased
and an airborne fraction of cumulative emissions that decreased over
time. Even though the two methodologies are not strictly comparable,
the results are broadly consistent, aside from a gradual level shift
around the middle of the sample. Indeed, from Figure 6 and for the
first half of the sample, we observe a fairly constant coefficient of
cumulative CO2 emissions and a slightly increasing coefficients of CO2
missions to explain temperatures. After the middle of the 20th century,
oth magnitudes increase, but they remain fairly constant in the last
ew decades. It could also be argued that the time-varying effects
etected by our approach are somehow captured by the uncertainties
bserved in climate models (see, for example the recent of Spafford and
acDougall, 2020 documenting the distributional shape of uncertainty

f the TCRE).
On the other hand, combining carbon-cycle and physical-climate

odels, Ricke and Caldeira (2014) find a median time between an
mission and maximum warming of 10.1 years (90 per cent probability
ange of 6.6–30.7 years). In our model, we cannot estimate how long it
akes to observe the consequences of a single impulse in CO2 emissions.
evertheless, by noting in Fig. 6 the recent increase in the coefficients
f emissions and cumulative emissions in the model for the 95th
uantile, we conjecture that a response of one decade (or three at most)
robably falls short.

.2. Forecasting global temperatures

The flexibility present in TVP-QR models is desirable in terms of
stimation and impact analysis. To explore the performance of the
VP-QR framework in a climate scenario we run a small forecasting
erformance exercise where 10-year ahead conditional forecasts of
ultiple quantiles of global temperatures are produced, using different

ompeting models. A 10-year horizon seems a sensible choice, given
hat research shows that this is the median time between a given CO2
mission and the corresponding maximum warming (see Ricke and
aldeira, 2014). Given the forward-looking nature of the debate around
itigation policies, such an horizon potentially allows for some of these
olicies to show their full effect. On the other hand, given the sample
eriod in our analysis, this horizon enables us to produce real-time
orecasts for temperature anomalies for the end of the current decade.10

As before, we employ (1) as our baseline specification estimated by
LS, so that the competing models then differ in terms of model specifi-
ation (mean regressions, MR, vs. quantile regressions, QR), parameter
lternatives (constant parameter, CP, vs. time-varying intercept only,
VI, vs. time-varying parameters, TVP), as well as in terms of forcings
e.g., 𝐺𝐻𝐺, 𝑆𝑜𝑙𝑎𝑟𝑃 𝑜𝑤𝑒𝑟, 𝑂𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛, etc.).

The following equation

𝑡+ℎ = 𝛽𝑡(𝜏)𝒙𝑡 + 𝜀𝑡+ℎ, 𝜀𝑡+ℎ ∼ 𝐴𝐿𝐷(𝜎(𝜏)), (9)

s the general form of the specifications used to forecast ℎ-steps ahead.11

hen the state variance in Eq. (14) is set equal to zero, one can obtain
he constant parameter case: a full list of the models and their corre-
ponding performance can be seen in Table A.1. With the exception of
he benchmark model, which is estimated by least squares, all other
odels are estimated using a variant of the automated horseshoe prior

f Carvalho et al. (2010).12 For models with additional forcings as
redictors, we estimate each model with all the regressors from the

10 Other horizons are also feasible: in Table A.2 we present results for ℎ = 1.
11 Recall that 𝒙𝑡 contains forcings (including the baseline forcing CO2 in

ogged form), but also intercepts and lags of temperatures.
12 Additional details regarding the specification can be found in Appendix.
6

benchmark model in Eq. (2) and one additional forcing at a time, or
a model where all forcings are included.13,14

In this pseudo out-of-sample forecasting exercise, each model is
originally estimated on the first half of the sample (1856–1939) and
then used to produce ten-year ahead forecasts for 19 different quantiles
(𝜏 = 0.05, 0.10,… , 0.90, 0.95), using a rolling forecasting scheme, where
at each period in time thereafter only the last 𝑇

2 periods of available
information is used in the parameter estimation, before continuing to a
10-year ahead prediction. Although we estimate a range of conditional
quantiles, for the sake of brevity and due to their importance, we focus
on the relative quantile scores for the lower and upper tails of the
distribution (5th and & 95th percentiles respectively). As a measure of
performance, we use the following quantile score for each competing
model 𝑗, which is taken as an average across all the forecasting periods,

𝑄𝑆𝑐𝑜𝑟𝑒𝑗ℎ(𝜏) =
1
𝑅ℎ

𝑅ℎ
∑

𝑠=1
[𝑔𝑠+ℎ−�̂�𝜏 (𝑔𝑠+ℎ|𝒙𝑠)][𝜏−I{𝑔𝑠+ℎ ≤ �̂�𝜏 (𝑔𝑠+ℎ|𝒙𝑠)}], (10)

here 𝑅ℎ is the length of the forecast evaluation sample. Complemen-
ary to this measure, which focuses on each quantile level specifically,
e follow (Geweke and Amisano, 2010) in using the predictive like-

ihood (PL) as a measure of the general performance of competing
odels to capture the whole predictive density of global tempera-

ures. Indeed, each model will produce a predictive distribution for
emperatures ex-ante and consequently a predictive likelihood ex-post.

Thus, the PL is obtained as the 10-year ahead predictive density
valuated at the 10-year ahead realization of temperatures. In this case,
value greater than 1 implies a superior performance in capturing the

omplete distribution of temperatures. In order to examine if there is
gain in using any of the competing models, we proceed by exam-

ning their relative performance compared to the QScore or PL of the
enchmark model as a simple ratio measure. Therefore, in terms of the
uantile scores, a smaller value indicates a better performance, so that a
alue lower than 1 implies that the competing model outperforms the
enchmark, while for the PL, a value greater than 1 implies a better
erformance in capturing the complete distribution of temperature
nomalies.

Table 3 summarizes the forecasting performance of the different
lass of models across the specific tails of the distribution, as captured
y the relevant quantile score and across the overall distribution, as
easured by the predictive likelihood. Given these, we observe that

or the lower tail most of our competing model classes outperform
he benchmark specification. In particular, mean models with some
ime variation (by allowing only for the intercept coefficient to vary
r by allowing all coefficients to change over time) are among the best
erforming ones (i.e., TVI-MR or TVP-MR outperforms CP-MR).

On the other hand, for the upper tail of the distribution, although
ime variation may not appear to be necessary, the best performing
lass still models the quantile levels explicitly. In terms of the overall
ensity, both a quantile specification and the flexibility of time-varying
oefficients are needed in order to maximize the forecasting gains over
he benchmark model. By examining the forecasting performance of
ach specific model individually (e.g., see Table A.1 in Appendix) we
an also see that methane emissions (CH4) appear to be a good pre-

dictor of upside risk in temperature anomalies, while when attempting

13 𝒙𝑡 = (𝑓 (𝑔𝑡−1, 𝐶𝑂2𝑡−1 ), 𝐺𝐻𝐺𝑡−1,𝑊𝑀𝐺𝐻𝐺𝑡−1, 𝐶𝐻4
𝑡−1,N2O𝑡−1, 𝐴𝑁𝑡−1, 𝐴𝑆𝑡−1,

𝐴𝑀𝑂𝑡−1, 𝑆𝑜𝑙𝑎𝑟𝑡−1) where 𝑓 (𝑔𝑡−1, 𝐶𝑂2𝑡−1 ) is defined as in Eq. (2).
14 One could easily expand the set of competing models to include different

combinations of forcings (or principal components of such predictors), but
in this forecasting exercise the main focus is to identify whether the TVP-
QR approach is suitable in the current context and identify which predictors
might be the main drivers of the evolution of temperature distributions. Thus,
the approach of including predictors one by one has been deemed more

appropriate.



Energy Economics 131 (2024) 107286A. Phella et al.
Fig. 5. Quantile Score evolution (left panel) and the predicted conditional quantile (right panel) for the 5th conditional quantile of global temperatures for specific models.
Fig. 6. Quantile Score evolution (left panel) and the predicted conditional quantile (right panel) for the 95th conditional quantile of global temperatures for specific models.
Table 3
Summary of forecasting performance for 10-year ahead prediction.

Model Class QScore5 QScore95 PL

CP-MR 0.402 0.609 1.640
TVI-MR 0.181 0.616 2.142
TVP-MR 0.209 0.578 1.821
CP-QR 0.602 0.536 1.670
TVI-QR 0.312 1.417 2.151
TVP-QR 0.469 0.998 2.425

Notes: MR denotes ‘‘mean regression’’, QR denotes ‘‘quantile regression’’,
while CP indicates ‘‘constant parameters’’, TVI denotes ‘‘time-varying
intercept only’’ and TVP denotes ‘‘time-varying parameters’’; QScore
refers to the quantile score for each respective quantile 𝜏 and a value
of less than 1 implies that the model is outperforming the benchmark
model. PL refers to the predictive likelihood measure – a value greater
than 1 implies that the respective competing model is outperforming
the benchmark. The value indicated for each specific model class is the
average performance measure of all the competing models within that
class and bold values indicate the best performing class.

to predict the complete distribution, information from all the climate
forcings seems to be useful.

Figs. 5 &6 illustrate the evolution of the QScore for the 5th and
95th quantile for the best performing model and the QScore of the
7

benchmark model in the left panel, while the right panel indicates
the predicted conditional quantile value for each of those models. In
the case of the lower tail, the forecasting performance of the best
competing model (TVI-MR specification, augmented with GHG) and the
benchmark model varies over time — however, the best specification
outperforms the benchmark model across most of the periods under
consideration.

The shortcomings of the benchmark specification are even more
apparent in the latter part of the sample, with the predictions of the
two models diverging after the 1990s. This coincides with an increasing
trend in temperatures overall, but particularly an accelerated trend in
the lower temperatures. In this case, due to the ability of the intercept
coefficient to take distinct values in each period, time-varying models
may be able to pick the stronger trend present in the lower tail of
the distribution much better. A similar picture can also be observed
in Fig. 6, where the CP-QR specification augmented with methane
emissions also outperforms the benchmark across most of the sample
periods. In this case, time variation may not provide significant gains,
but explicitly modelling the upper tail of the temperature distribution
is relevant.

Although overall there is no single model or specification which
could be deemed as the best predictive model across the whole distribu-
tion of average global temperatures, a clear fact is that the benchmark
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Table 4
Models in the superior set for 10-year ahead prediction.

Groups QScore5 QScore95 PL

All competing models
(61 models in total)

All models except:
Benchmark (by OLS),
TVP-QR-N2O

All models except:
TVI-QR-𝐺𝐻𝐺, TVI-QR-CH4,
TVI-QR-𝐴𝑁 , TVI-QR-𝐴𝑆,
TVI-QR-𝐴𝑀𝑂, TVI-QR-Full,
TVP-QR-Full

All models except:
Benchmark (by OLS),
CP-MR-CH4, CP-MR-N2O,
CP-MR-𝐴𝑆, CP-MR-𝐴𝑀𝑂,
CP-MR-𝑆𝑜𝑙𝑎𝑟, CP-MR-Full

Benchmark (by OLS)
+ all CP-MR models
(11 models in total)

All models except:
Benchmark (by OLS), 𝐴𝑆

All 11 models All models except:
Benchmark (by OLS)

Benchmark (by OLS)
+ all TVI-MR models
(11 models in total)

All models except:
Benchmark (by OLS), 𝐴𝑁

All 11 models All models except:
Benchmark (by OLS), CH4

Benchmark (by OLS)
+ all TVP-MR models
(11 models in total)

All models except:
Benchmark by OLS

All 11 models All models except:
Benchmark (by OLS), 𝑆𝑜𝑙𝑎𝑟

Benchmark (by OLS)
+ all CP-QR models
(11 models in total)

Full model All models except:
Benchmark (by OLS), 𝐴𝑀𝑂

Full model

Benchmark (by OLS)
+ all TVI-QR models
(11 models in total)

All models except:
Benchmark (by OLS)

All models except:
𝑊𝑀𝐺𝐻𝐺

All models except:
Benchmark (by OLS),
𝑊𝑀𝐺𝐻𝐺, N2O, Full

Benchmark (by OLS)
+ all TVP-QR models
(11 models in total)

Full model All 11 models All models except:
Benchmark (by OLS),
N2O, 𝐴𝑁 , 𝐴𝑆

Greenhouse Gases
(6 models in total)

All models except:
TVP-QR

All models except:
TVI-QR, TVP-QR

TVI-MR, TVI-QR,
TVP-QR

Well-mixed
Greenhouse Gases
(6 models in total)

All 6 models All models except:
TVI-QR, TVP-QR

All models except:
CP-MR

Methane Emissions
(6 models)

All models except:
CP-QR, TVP-QR

All models except:
TVI-QR, TVP-QR

All models except:
CP-MR

Nitrous Oxide
(6 models in total)

All models except:
TVP-QR

All models except:
TVI-QR, TVP-QR

All models except:
CP-MR

Aero Naturals
(6 models in total)

All 6 models All models except:
TVI-QR, TVP-QR

All models except:
CP-MR

Aerosols
(6 models in total)

All 6 models All models except:
TVI-QR

All models except:
CP-MR,CP-QR

Atlantic Multidecadal
Oscillation
(6 models in total)

All 6 models All models except:
TVI-QR

TVI-MR, TVI-QR,
TVP-QR

Solar Irradiance
(6 models in total)

All 6 models All models except:
TVI-QR

TVI-QR, TVP-QR

Notes: results obtained with a confidence level of 80% and 5000 bootstrap replications.
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model is often outperformed by several of the proposed models and
may no longer be sufficient for accurately forecasting the distribution
of global temperatures. In fact, these results suggest one should not be
solely dependent on a single competing model for such predictions.15

Furthermore, and given that we have a large number of competing
odels (in excess of 60), it is worth exploring the model confidence

et (MCS) approach of Hansen et al. (2011). The MCS contains a set of
odels such that the best model is included with a given confidence

evel (very much like a confidence interval in the case of a parameter).
he more informative the data is, the tighter (i.e., containing fewer
odels) the set is going to be. The procedure is implemented by

ootstrap in a sequential manner by means of an equivalence test and
n elimination rule — if the equivalence test is rejected (i.e., a model
s significantly inferior compared to another one), then models are
radually discarded until the equivalence test is not rejected, with the
CS containing the ‘‘surviving’’ models. Thus, contrary to standard

15 Please note that we conducted similar exercises for different forecasting
orizons (see Appendix) and utilizing different priors (i.e., student-t prior etc.),
ut the results remain qualitatively the same and in fact suggest that the
erformance of the benchmark model deteriorates as the horizon increases.
8

f

model selection criteria, which choose a single model, the MCS allows
for the possibility that more than one model can be the best.

In our study, we determine the MCSs in terms of the QScore5,
QScore95, and PL criteria applied to the selection of models in Ta-
bles A.1–A.2 in Appendix. We identify the best overall performing
models and by sub-classes of type of models’ specification (c.f. Table 3)
and climate driver (c.f. Table 1). The results are based on 5000 resam-
ples for the bootstrap implementation, employing the Tmax statistic
described in Hansen et al. (2011), with a confidence level of 80%,
thus aiming for relatively tight confidence sets. The Tmax statistic is
based on multiple 𝑡-statistics where the sample loss of the 𝑖th model is
compared to the average across models in set.

The MCSs constructed in this way are presented in Tables 4 for
ℎ = 10 and A.3 for ℎ = 1. From Table 4, we observe that when
ll the 61 different models are considered, the data does not provide
ufficient information to distinguish among those that best forecast the
emperature’s lower tail (QScore5). It is also difficult to find a pattern
or the upper tail (QScore95), but at least we rule out the class of
he TVI-QR models. For the PL criterion, the TVI-MR class is excluded
rom the superior set. Noticeably, the benchmark model is frequently
xcluded from the MCS.

Once we consider this analysis by model sub-classes, we again con-

irm that the data is largely uninformative for QScore5 and QScore95.
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Nevertheless, we find that 𝐺𝐻𝐺, 𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 and 𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 seem
not to be good predictors of lower tail temperatures for the class of
TVP-MR models. For the upper tail, the same happens with 𝐴𝑀𝑂 for
CP-QR models and 𝑊𝑀𝐺𝐻𝐺 for TVI-QR models. When we fix the
climate driver, we conclude that the TVI-QR model is never selected for
QScore95, but always features in the MCS if we consider the broader PL
measure. Under this criterion, CP-MR are always excluded and we have
sharper choices in some cases, with TVI-QR and TVP-QR performing
generally well.16

On the one hand, the results from the MCS analysis suggest that
models allowing for time-varying coefficients and quantile heterogene-
ity seem to be quite robust, as we initially conjectured. On the other
hand, there is no single model or class of models that always dominates,
which leads us to consider a forecast averaging framework next.

3.3. Temperature distributions for 2030

An additional advantage of our framework is the ability to produce
in a straightforward manner (without resorting to extensive simu-
lations) a distributional snapshot of future temperatures. To further
ensure robustness of our results, we follow a forecast averaging ap-
proach, a method with a long history in econometrics, which in general
improves forecast accuracy by reducing forecast variances and offset-
ting individual model biases — see the seminal works of Bates and
Granger (1969) and Granger (1989) on forecast combination, Hoeting
et al. (1999) for a survey on Bayesian model averaging, and Raftery
et al. (2010) and McAlinn and West (2019) for recent developments in
Bayesian dynamic model averaging.

Thus, in order to guard against the model uncertainty outlined in
the previous section, given the distinct performance of different models
and predictors across different parts of the distribution, we propose
to weigh each model’s predictions according to the PL measure of
the previous exercise. We believe this to be an appropriate criterion
given that it is a measure which focuses on the whole distribution and
not a particular tail. One could alternatively base this averaging on
probabilities determined on other information criteria or QScores for
a particular tail of the distribution.

Following Kapetanios et al. (2008), which has been found to work
equally well or better than Bayesian averaging, we can now obtain the
conditional quantile forecast of variable 𝑔𝑡+ℎ as:

�̂�𝜏 (𝑔𝑡+ℎ|𝑥𝑡) =
𝑚
∑

𝑗=1
𝑤𝑗 ∗ �̂�𝑗𝜏 (𝑔𝑡+ℎ|𝑥𝑡) 𝑓𝑜𝑟 𝑗 = 1,… , 𝑚 (11)

where 𝑤𝑗 = 𝑒𝑥𝑝(𝑃𝐿𝑗 )
∑𝑚
𝑗=1 𝑒𝑥𝑝(𝑃𝐿𝑗 )

and 𝑚 is the total number of alternative
models.17

Utilizing this forecast combination approach, we produce 𝑖) 10-
year ahead forecasts for the average global temperatures in 2030,
given the emission realizations that occurred up until 2020, and 𝑖𝑖) an
alternative counterfactual scenario of emissions between 2005–2020, as
that given by RCP scenarios. Different RCP scenarios make assumptions
about anthropogenic-led changes in concentrations of 𝐺𝐻𝐺 in the
atmosphere. This includes conjectures about efforts to curb emissions,
such as changes in the share of renewables in energy production,
carbon-capture measures and changes in the transport mix (more public
transport, cycling, electric vehicles, etc.). For brevity, we focus on
the intermediate pathway, RCP 4.5, which is a medium stabilization

16 For ℎ = 1, results in Table A.3 are similar, with the MCS always containing
VI-QR model, and the TVP-QR specification featuring in all but one cases
nder the PL criterion.
17 In the case of the PL measure, the associated weights across the competing
odels used are not very dissimilar but rather close to a simple average. This,
owever, may change if one focuses on a particular tail of the distribution and
9

ses quantile scores instead, which exhibit greater variance across models.
scenario.18 Given those two scenarios of emission levels (realized and
CP 4.5), we produce conditional forecasts for a range of quantiles for

he average global temperature in 2030 and then proceed to obtain the
redictive density via a non-parametric kernel.19

In Fig. 7, we can see that temperatures associated with a medium
tabilization pathway (RCP 4.5, corresponding to lower emission lev-
ls if implemented) are on average lower, with a probability density
unction located to the left of the one associated with the realized
mission levels that occurred between 2005 and 2020.20 Specifically,
ocusing on the left panel we can see that the medium stabilization
athway scenario is associated with lower temperature anomalies in the
pper part of the distribution. This implies that the largest temperature
nomalies (i.e., 85th percentile) under the realized emissions is almost
.2 degrees higher than under the reduced emissions scenario.

Note that one could expect the two conditional distributions to be
ore dissimilar to each other, particularly given the policy focus on

ignificantly reducing several forcing emissions. However, one should
oint out that, in this particular instance, both the prediction given the
ctual emission realizations, as well as the one using the alternative
ounterfactual scenario of emissions, utilize the same temperature re-
lizations. If the counterfactual emissions scenario was also associated
ith distinctively different temperatures (or temperature projections)
p until 2020 and those were used instead in the counterfactual case,
hen the two distributions would be further apart.

. Conclusion

In this paper we considered a range of models that have the poten-
ial to improve the prediction of temperatures. To do so, we employed
time-series quantile regression approach with TVP that allows us to

) quantitatively differentiate the impact of the distinct drivers across
he distribution of temperatures, and 𝑖𝑖) to document the extent to

which these effects have changed over time. This is important as, given
the substantial changes in the dynamics and volatility of temperatures
in the last two centuries, our setup allows us to model these crucial
features in a flexible, yet richly parameterized way. This, in turn, proves
to be very convenient for forecasting, particularly tail risks in global
temperatures, something that traditional, ‘‘mean-centric’’ approaches
are not designed to achieve.

Our results show that in terms of ‘‘risky’’ temperatures, the bench-
mark model predominantly used in the literature may no longer be
sufficient. In particular, mean models with some time variation, out-
perform their constant-parameter alternatives when concerned with the
left tail of the distribution. On the other hand, for the upper tail of
the distribution, though time variation may not appear to be necessary,
explicitly modelling the quantile levels of temperature anomalies can
offer significant forecasting gains. Furthermore, in terms of the overall
density, both a quantile specification and the flexibility of time-varying
coefficients are needed. Our results also underline the escalating role of
additional anthropogenic forcings such as methane emissions (CH4). In
particular they appear to be a good predictor of upside risk in temper-
ature anomalies, while when concerned with the overall distribution of
temperature anomalies, all forcings may prove relevant.

In terms of forecasting, we also show the relevance of forecast
averaging as a way of safeguarding against model uncertainty. This is
particularly important when no single specification seems to dominate,
as it is the case for temperatures forecasting. Moreover, we illustrate

18 We experimented with the original RCP pathways (2.6, 4.5, 6 and 8.5),
but the results were not substantially different.

19 One could alternatively fit a parametric function, e.g., an asymmetric 𝑡-
distribution, as this has been proposed by Azzalini and Capitanio (2003) and
used extensively in the macro-at-risk literature.

20 RCP scenario emissions are available from 2005, and 2020 is the last
observational period used to produce the conditional distribution forecasts for

2030 temperature anomalies.
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Fig. 7. Predicted probability density function (left panel) and predicted conditional quantiles (right panel) for 2030 average global temperatures, given realized emissions and
target emissions under RCP 4.5.
the usefulness of producing forecasts that offer us a fuller picture
of the distribution. Our implementation offers only a glimpse of the
possibilities — indeed, it would be worthwhile to consider different
scenarios for both forcings and temperatures and obtain probabilistic
statements about specific targets.

It would also be interesting to compare our findings (obtained for a
post-industrial revolution sample period) with a (time-varying) quantile
analysis of paleoclimate data. Indeed, ascertaining the long-run con-
tribution of orbital variables, in conjunction with GHG concentration
levels, in explaining different parts of the distribution of temperatures
would help us to establish a long-term baseline for its evolution and
therefore provide a useful contrast with recent anthropogenic-driven
climate change. This is left for future research.

5. Technical appendix

5.1. Quantile regressions with time-varying parameters

We consider here quantile regression models with possibly time-
varying parameters following closely the exposition in Korobilis et al.
(2021). We trace the full conditional distribution of 𝑔𝑡, by modelling
each of its quantiles, say 𝜏 = {0.05, 0.10,… , 0.90, 0.95} in the following
manner:

𝑔𝑡 = 𝜏
(

𝑔𝑡|𝒙𝑡
)

+ 𝜀𝑡, (12)

with 𝜏 denoting the conditional quantile function of the 𝜏-th quantile
of 𝑔𝑡. In particular, we focus on the function

𝜏
(

𝑔𝑡|𝒙𝑡
)

= 𝒙𝑡𝜷𝑡(𝜏), (13)

𝜷𝑡(𝜏) = 𝜷𝑡−1(𝜏) + 𝒗𝑡, (14)

such that 𝒗𝑡 ∼ 𝑁𝑝
(

𝟎,𝑽 𝑡(𝜏)
)

is a state error with covariance matrix
𝑽 𝑡(𝜏). In this specification, parameters evolve as random walks, which
allows for flexibility, in that the evolution of 𝜷 can be smooth for small
𝑽 𝑡(𝜏), or it can capture sudden shifts for large values of 𝑽 𝑡(𝜏).

For the case of constant parameters, 𝛽𝑡(𝜏) = 𝛽(𝜏), univariate condi-
tional quantiles can be obtained by solving

𝛽(𝜏) = argmin
𝑏

𝑇
∑

𝑡=1
𝐿𝜏 (𝑔𝑡 − 𝒙𝑡𝑏), (15)

where 𝐿𝜏 (𝑢) = (𝜏 − I(𝑢 < 0))𝑢 is a loss function, which is equivalent
to maximizing an asymmetric Laplace likelihood (see Yu and Moyeed,
10
2001 for details) when 𝜀𝑡 has density given by

𝑝(𝜀𝑡; 𝜏, 𝜎) ∼
𝜏(1 − 𝜏)
𝜎(𝜏)2

[

𝑒
(1−𝜏) 𝜀𝑡

𝜎(𝜏)2 I(𝜀𝑡 ≤ 0) + 𝑒
−𝜏 𝜀𝑡

𝜎(𝜏)2 I(𝜀𝑡 > 0)
]

, (16)

with 𝜎(𝜏)2 a scale parameter. In turn, the asymmetric Laplace distribu-
tion (ALD) can be written as a Gaussian-Exponential scale mixture of
the form

(𝜀𝑡|𝑢𝑡, 𝑧𝑡) ∼ 𝜃(𝜏)𝑧𝑡 +
√

𝜎(𝜏)2𝜅(𝜏)2𝑧𝑡(𝜏)𝑢𝑡, (17)

where 𝑧𝑡(𝜏) ∼ 𝐸𝑥𝑝(𝜎2(𝜏)) and 𝑢𝑡 ∼ 𝑁(0, 1), with 𝜃(𝜏), 𝜅(𝜏)2 being
parameters defined as 𝜃(𝜏) = 1−2𝜏

𝜏(1−𝜏) , 𝜅(𝜏)
2 = 2

𝜏(1−𝜏) .
21

The error distribution in Eq. (12) is assumed to follow the mix-
ture distribution in Eq. (17). The advantages of this assumption are
clear: the conditional parameter posteriors will be identical to standard
expressions from linear Gaussian regression models, given that the
likelihood is conditionally (on 𝑧𝑡) Gaussian.

Regarding time variation, Korobilis (2021) show that the model
in Eqs. (13)–(14) can be rewritten as a high-dimensional regression.
Indeed, stacking all 𝑇 observations, we obtain

𝜏 (𝒈|) = 𝜷𝛥(𝜏), (18)
𝜷𝛥(𝜏) = 𝒗, (19)

where 𝒈 = [𝑔1,… , 𝑔𝑇 ]′, 𝒗 =
[

𝒗′1,… , 𝒗′𝑇
]′ and

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1 0 ⋮ 0 0

𝑥2 𝑥2 ⋮ 0 0

… … ⋱ … …

𝑥𝑇−1 𝑥𝑇−1 ⋮ 𝑥𝑇−1 0

𝑥𝑇 𝑥𝑇 ⋮ 𝑥𝑇 𝑥𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, and

𝑇 × 𝑇 𝑝

𝜷𝛥(𝜏) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜷1(𝜏)

𝛥𝜷2(𝜏)

...

𝛥𝜷𝑇−1(𝜏)

𝛥𝜷𝑇 (𝜏)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

𝑇 𝑝 × 1

(20)

21 The result can be obtained following Kozumi & Kobayashi (2011).
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Fig. 8. Posterior estimates of the benchmark model for the 5th quantile, estimated by a constant parameter quantile regression, a time-varying intercept only alternative and a
full time-varying parameter specification (including one standard deviation confidence bands), along with the OLS estimate.
Eq. (19) may be seen as a prior for 𝜷𝛥(𝜏), such that Eq. (18) is a
linear regression model and thus estimated by standard procedures for
constant parameter models. Note that we can easily recover the original
vector of TVPs, 𝜷 = [𝜷1(𝜏)′,… , 𝜷𝑇 (𝜏)′]′ from the cumulative sum of the
vector of first differences, 𝜷𝛥(𝜏).

This new parameterization combines Eq. (12) with the assumptions
for the error term in Eq. (17), alongside the reparameterized TVP model
in Eqs. (18) and (19), such that

𝒈 = 𝜷𝛥(𝜏) + 𝜃(𝜏)𝒛(𝜏) + �̃�𝒖, (21)

where �̃� is a 𝑇 × 𝑇 diagonal matrix with 𝑡th diagonal element
√

𝜎(𝜏)2𝜅(𝜏)2𝑧𝑡(𝜏).
Employing the following priors, 𝑧(𝜏) ∼ 𝐸𝑥𝑝(𝜎(𝜏)2), 𝜎(𝜏)2 ∼

𝑖𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(𝜌1, 𝜌2) and 𝜷𝛥(𝜏) ∼ 𝑁(0,𝑽 𝑡(𝜏)), combined with the like-
lihood from (21), produces the conditional posteriors

𝛽𝛥(𝜏)|∙ ∼ 𝑁
(

𝑸 ×
(

 ′𝑼−1𝒚
)

,𝑸
)

, (22)

𝜎(𝜏)2|∙ ∼ 𝑖𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎

(

𝜌1 +
3𝑇
2
, 𝜌2 +

𝑇
∑

𝑡=1

(

𝑦⋆𝑡
)2

2𝑧𝑡(𝜏)𝜅(𝜏)2
+

𝑇
∑

𝑡=1
𝑧𝑡(𝜏)

)

, (23)

𝑧𝑡(𝜏)|∙ ∼ 𝐼𝐺

(
√

𝜃(𝜏)2 + 2𝜅(𝜏)2

|𝑦𝑡 − 𝑡𝜷𝛥(𝜏)|
,
𝜃(𝜏)2 + 2𝜅(𝜏)2

𝜎(𝜏)2𝜅(𝜏)2

)

, (24)

where the notation |∙ means ‘‘conditioning on other parameters and
data’’, with 𝑸 =

(

 ′𝑼−1 + 𝑉𝑡(𝜏)−1
)−1, 𝑼 =

(

𝜎(𝜏)2𝜅(𝜏)2
)

× 𝑑𝑖𝑎𝑔
(

𝑧1(𝜏),
… , 𝑧𝑇 (𝜏)

)

, 𝒚 = (𝒚 − 𝜃(𝜏)𝒛(𝜏)), 𝑦⋆𝑡 =
(

𝑦𝑡 − 𝑡𝜷𝛥(𝜏) − 𝜃(𝜏)𝑧𝑡(𝜏)
)

, and 𝐼𝐺
denotes the inverse Gaussian distribution.

Although a variety of priors has been considered, the results re-
ported here consider the Makalic and Schmidt (2016) formulation of
the horseshoe prior of Carvalho et al. (2010), for 𝜷𝛥(𝜏):22

𝜷𝛥(𝜏)|𝜆(𝜏)2, {𝜓𝑖(𝜏)2}
𝑇 𝑝
𝑖=1 ∼ 𝑁(0, 𝑉𝑡(𝜏)), (25)

22 The horseshoe prior defined in Carvalho et al. (2010) makes use of
half-Cauchy priors, which may complicate the derivation of conditional pos-
teriors. Makalic and Schmidt (2016) show that the half-Cauchy distribution
can be expressed as a mixture of inverse Gamma distributions, which is the
formulation adopted here — note also that it is straightforward to embed
the formulas for the conditionals posteriors of 𝜆(𝜏)2, 𝜉, 𝜓𝑖(𝜏)2 and 𝜁𝑖(𝜏) to the
Gibbs-Sampler.
11
𝑉𝑖,𝑖(𝜏) = 𝜆(𝜏)2𝜓𝑖(𝜏)2, 𝑖 = 1,… , 𝑇 𝑝,

𝜆(𝜏)2|𝜉(𝜏) ∼ 𝑖𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎 (1∕2, 1∕𝜉(𝜏)) , (26)
𝜉(𝜏) ∼ 𝑖𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎 (1∕2, 1) , (27)

𝜓𝑖(𝜏)2|𝜁𝑖(𝜏) ∼ 𝑖𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎
(

1∕2, 1∕𝜁𝑖(𝜏)
)

, (28)

𝜁𝑖(𝜏) ∼ 𝑖𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎 (1∕2, 1) , (29)

The vector of hyperparameters 𝑉 (𝜏) has its own prior and is up-
dated by the data, while 𝜆(𝜏) and 𝜓𝑖(𝜏) do not require any tuning,
so that the horseshoe becomes fully automatic and equally suited to
low-dimensional and high-dimensional problems.23,24

Given that the proposed methodology, estimates each quantile level
independently, there is no guarantee that the monotonicity assumption
for estimated quantiles holds (i.e., the conditional quantile value for
temperature anomalies 𝜏 = 0.05 should be smaller than the conditional
quantile value for temperature anomalies 𝜏 = 0.10). Therefore, similarly
to Korobilis et al. (2021), we also employ the algorithm of Rodrigues
and Fan (2017), which is specifically targeted for Bayesian quantile
regressions. In essence, this algorithm smooths out the model quantile
estimates, by allowing for information from neighbouring quantiles 𝜏⋆
to be used in the estimation of a relevant quantile level 𝜏. The closer the
neighbouring quantile 𝜏⋆ to 𝜏 the more information its quantile curve
can provide for estimation of the quantile curve at 𝜏. When 𝜏 = 𝜏⋆ then
the induced quantile is equivalent to the estimated quantile from the
model.

23 See Korobilis et al. (2021) for details on the implementation of the Gibbs
sampler for our TVP-QR case.

24 It is worth noting that one could allow for variable specific scalings
such that 𝑉𝑖𝑘,𝑖𝑘(𝜏) = 𝜆(𝜏)2𝜓𝑖𝑘(𝜏)2, 𝑖 = 1,… , 𝑇 𝑝. We refer the interested reader
to Pfarrhofer (2022), where such a setup has been shown to work well for a
dynamic shrinkage prior case.

25 The specification includes all climate forcings considered along with two
relevant lags of temperatures (i.e., 𝒙𝑡 = (𝑓 (𝑔𝑡−1, 𝐶𝑂2𝑡−1 ), 𝐺𝐻𝐺𝑡−1,𝑊𝑀𝐺𝐻𝐺𝑡−1,
𝐶𝐻4

𝑡−1, 𝑁2𝑂𝑡−1, 𝐴𝑁𝑡−1, 𝐴𝑆𝑡−1, 𝐴𝑀𝑂𝑡−1, 𝑆𝑜𝑙𝑎𝑟𝑡−1).
26 The specification includes all climate forcings considered along with two

relevant lags of temperatures (i.e., 𝒙𝑡 = (𝑓 (𝑔𝑡−1, 𝐶𝑂2𝑡−1 ), 𝐺𝐻𝐺𝑡−1,𝑊𝑀𝐺𝐻𝐺𝑡−1,
𝐶𝐻4 , 𝑁 𝑂 ,𝐴𝑁 ,𝐴𝑆 ,𝐴𝑀𝑂 ,𝑆𝑜𝑙𝑎𝑟 ).
𝑡−1 2 𝑡−1 𝑡−1 𝑡−1 𝑡−1 𝑡−1
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Fig. 9. Posterior estimates of the model with all climate forcings for the 5th quantile, estimated by a constant parameter quantile regression, a time-varying intercept only
alternative and a full time-varying parameter specification (including one standard deviation confidence bands), along with the OLS estimate.25
Fig. 10. Posterior estimates of the model with all climate forcings for the 95th quantile, estimated by a constant parameter quantile regression, a time-varying intercept only
alternative and a full time-varying parameter specification (including one standard deviation confidence bands), along with the OLS estimate.26
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Table A.1
Forecasting Performance for 10-year ahead conditional quantile forecasts of global average temperatures.

Model specification Mean models Model specification Quantile models

QScore5 QScore95 PL QScore5 QScore95 PL

CP-MR-Benchmark 0.461 0.621 1.578 CP-QR-Benchmark 0.698 0.532 1.500
TVI-MR-Benchmark 0.180 0.611 2.119 TVI-QR-Benchmark 0.295 1.415 2.168
TVP-MR-Benchmark 0.214 0.561 1.786 TVP-QR-Benchmark 0.524 0.956 2.651

CP-MR-𝐺𝐻𝐺 0.441 0.610 1.618 CP-QR-𝐺𝐻𝐺 0.608 0.553 1.561
CP-MR-𝑊𝑀𝐺𝐻𝐺 0.363 0.579 1.726 CP-QR-𝑊𝑀𝐺𝐻𝐺 0.580 0.525 1.678
CP-MR-CH4 0.307 0.599 1.669 CP-QR-CH4 0.448 0.505 1.875
CP-MR-N2O 0.326 0.613 1.683 CP-QR-N2O 0.488 0.532 1.754
CP-MR-𝐴𝑒𝑟𝑜𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑠 0.459 0.632 1.571 CP-QR-𝐴𝑒𝑟𝑜𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑠 0.783 0.526 1.512
CP-MR-𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 0.453 0.630 1.566 CP-QR-𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 0.671 0.528 1.552
CP-MR-𝐴𝑀𝑂 0.436 0.594 1.687 CP-QR-𝐴𝑀𝑂 0.771 0.571 1.462
CP-MR-𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 0.457 0.619 1.570 CP-QR-𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 0.745 0.538 1.479

TVI-MR-𝐺𝐻𝐺 0.177 0.626 2.174 TVI-QR-𝐺𝐻𝐺 0.308 1.390 2.293
TVI-MR-𝑊𝑀𝐺𝐻𝐺 0.178 0.595 2.164 TVI-QR-𝑊𝑀𝐺𝐻𝐺 0.299 1.445 2.066
TVI-MR-CH4 0.182 0.607 2.091 TVI-QR-CH4 0.324 1.389 1.981
TVI-MR-N2O 0.180 0.603 2.106 TVI-QR-N2O 0.329 1.425 2.093
TVI-MR-𝐴𝑒𝑟𝑜𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑠 0.184 0.634 2.140 TVI-QR-𝐴𝑒𝑟𝑜𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑠 0.321 1.479 2.229
TVI-MR-𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 0.180 0.626 2.143 TVI-QR-𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 0.305 1.435 2.179
TVI-MR-𝐴𝑀𝑂 0.182 0.614 2.171 TVI-QR-𝐴𝑀𝑂 0.308 1.406 2.414
TVI-MR-𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 0.180 0.646 2.147 TVI-QR-𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 0.306 1.404 2.332

TVP-MR-𝐺𝐻𝐺 0.217 0.599 1.791 TVP-QR-𝐺𝐻𝐺 0.525 1.040 2.459
TVP-MR-𝑊𝑀𝐺𝐻𝐺 0.205 0.611 1.842 TVP-QR-𝑊𝑀𝐺𝐻𝐺 0.444 0.988 2.434
TVP-MR-CH4 0.192 0.578 1.858 TVP-QR-CH4 0.417 1.054 2.378
TVP-MR-N2O 0.194 0.566 1.867 TVP-QR-N2O 0.466 1.075 2.089
TVP-MR-𝐴𝑒𝑟𝑜𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑠 0.226 0.562 1.770 TVP-QR-𝐴𝑒𝑟𝑜𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑠 0.498 1.085 2.131
TVP-MR-𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 0.218 0.603 1.777 TVP-QR-𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 0.549 0.933 2.022
TVP-MR-𝐴𝑀𝑂 0.204 0.564 1.818 TVP-QR-𝐴𝑀𝑂 0.460 0.924 2.486
TVP-MR-𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 0.216 0.608 1.761 TVP-QR-𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 0.530 0.925 2.841

CP-MR-Full 0.314 0.598 1.737 CP-QR-Full 0.216 0.556 2.223
TVI-MR-Full 0.187 0.596 2.167 TVI-QR-Full 0.325 1.379 1.750
TVP-MR-Full 0.205 0.528 1.936 TVP-QR-Full 0.278 1.004 2.755

Notes: MR denotes ‘‘mean regression’’, QR denotes ‘‘quantile regression’’, while CP indicates ‘‘constant parameters’’, TVI denotes ‘‘time-varying intercept only’’ and TVP denotes
‘‘time-varying parameters’’; ‘‘Full’’ implies that all possible regressors have been used; QScore refers to the quantile score for each respective quantile 𝜏 and a value of less than
1 implies that the model is outperforming the benchmark model. PL refers to the predictive likelihood measure – a value greater than 1 implies that the respective competing
model is outperforming the benchmark.
Table A.2
Forecasting Performance for 1-year ahead conditional quantile forecasts of global average temperatures.

Model specification Mean models Model specification Quantile models

QScore5 QScore95 PL QScore5 QScore95 PL

CP-MR-Benchmark 0.947 0.922 0.986 CP-QR-Benchmark 1.188 0.853 1.063
TVI-MR-Benchmark 1.014 0.854 1.027 TVI-QR-Benchmark 1.211 1.223 1.185
TVP-MR-Benchmark 1.023 0.926 0.983 TVP-QR-Benchmark 1.330 1.230 1.094

CP-MR-𝐺𝐻𝐺 0.933 0.918 0.987 CP-QR-𝐺𝐻𝐺 1.388 0.833 1.073
CP-MR-𝑊𝑀𝐺𝐻𝐺 0.950 0.859 1.025 CP-QR-𝑊𝑀𝐺𝐻𝐺 1.225 0.851 1.082
CP-MR-CH4 0.979 0.904 0.995 CP-QR-CH4 1.261 0.857 1.055
CP-MR-N2O 0.926 0.860 1.010 CP-QR-N2O 1.057 0.808 1.081
CP-MR-𝐴𝑒𝑟𝑜𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑠 0.942 0.934 0.985 CP-QR-𝐴𝑒𝑟𝑜𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑠 1.334 0.868 1.093
CP-MR-𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 0.958 0.899 0.989 CP-QR-𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 1.210 0.831 1.076
CP-MR-𝐴𝑀𝑂 0.914 0.936 0.981 CP-QR-𝐴𝑀𝑂 1.302 0.892 1.069
CP-MR-𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 0.930 0.952 0.981 CP-QR-𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 1.313 0.873 1.076

TVI-MR-𝐺𝐻𝐺 1.039 0.854 1.010 TVI-QR-𝐺𝐻𝐺 1.584 1.249 1.183
TVI-MR-𝑊𝑀𝐺𝐻𝐺 1.036 0.855 1.029 TVI-QR-𝑊𝑀𝐺𝐻𝐺 1.524 1.232 1.202
TVI-MR-CH4 1.032 0.867 1.028 TVI-QR-CH4 1.558 1.247 1.252
TVI-MR-N2O 1.020 0.873 1.031 TVI-QR-N2O 1.583 1.226 1.214
TVI-MR-𝐴𝑒𝑟𝑜𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑠 1.028 0.834 1.029 TVI-QR-𝐴𝑒𝑟𝑜𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑠 1.537 1.244 1.204
TVI-MR-𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 1.064 0.843 1.087 TVI-QR-𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 1.526 1.298 1.193
TVI-MR-𝐴𝑀𝑂 1.030 0.853 1.029 TVI-QR-𝐴𝑀𝑂 1.552 1.286 1.182
TVI-MR-𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 1.031 0.859 1.027 TVI-QR-𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 1.495 1.260 1.195

(continued on next page)
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Table A.2 (continued).
Model specification Mean models Model specification Quantile models

QScore5 QScore95 PL QScore5 QScore95 PL

TVP-MR-𝐺𝐻𝐺 1.067 0.952 0.921 TVP-QR-𝐺𝐻𝐺 1.723 1.471 1.096
TVP-MR-𝑊𝑀𝐺𝐻𝐺 1.033 0.902 0.959 TVP-QR-𝑊𝑀𝐺𝐻𝐺 1.619 1.361 1.132
TVP-MR-CH4 1.012 0.909 0.971 TVP-QR-CH4 1.692 1.315 1.133
TVP-MR-N2O 1.025 0.908 0.977 TVP-QR-N2O 1.673 1.285 1.131
TVP-MR-𝐴𝑒𝑟𝑜𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑠 1.164 1.067 0.989 TVP-QR-𝐴𝑒𝑟𝑜𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝑠 1.602 1.581 1.204
TVP-MR-𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 1.122 0.888 0.973 TVP-QR-𝐴𝑒𝑟𝑜𝑠𝑜𝑙𝑠 1.662 1.425 1.082
TVP-MR-𝐴𝑀𝑂 1.015 0.923 0.981 TVP-QR-𝐴𝑀𝑂 2.009 1.284 1.112
TVP-MR-𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 0.957 0.953 0.956 TVP-QR-𝑆𝑜𝑙𝑎𝑟𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 1.820 1.322 1.077

CP-MR-Full 1.031 0.889 0.992 CP-QR-Full 1.216 0.954 1.049
TVI-MR-Full 1.089 0.871 1.038 TVI-QR-Full 1.697 1.278 1.166
TVP-MR-Full 1.143 0.951 0.909 TVP-QR-Full 1.989 1.530 1.076

Notes: MR denotes ‘‘mean regression’’, QR denotes ‘‘quantile regression’’, while CP indicates ‘‘constant parameters’’, TVI denotes ‘‘time-varying intercept only’’ and TVP denotes
‘‘time-varying parameters’’; ‘‘Full’’ implies that all possible regressors have been used; QScore refers to the quantile score for each respective quantile 𝜏 and a value of less than
1 implies that the model is outperforming the benchmark model. PL refers to the predictive likelihood measure – a value greater than 1 implies that the respective competing
model is outperforming the benchmark.
Table A.3
Models in the superior set for 1-year ahead prediction.

Groups QScore5 QScore95 PL

All competing models
(61 models in total)

All models except:
all TVI-QR models
but TVI-QR-Benchmark,
TVI-QR-𝑆𝑜𝑙𝑎𝑟,
all TVP-QR models

All models except:
TVI-QR-𝐺𝐻𝐺, TVI-QR-CH4,
TVI-QR-𝐴𝑁 , TVI-QR-𝐴𝑁 ,
TVI-QR-𝐴𝑀𝑂, TVI-QR-Full,
TVP-QR-Full

All models except:
all CP-MR models,
all TVP-MR models,
TVI-MR-Benchmark,
TVI-MR-𝐺𝐻𝐺, TVI-MR-CH4,
TVI-MR-𝐴𝑀𝑂

Benchmark (by OLS)
+ all CP-MR models
(11 models in total)

All 11 models All models except:
𝑆𝑜𝑙𝑎𝑟

All 11 models

Benchmark (by OLS)
+ all TVI-MR models
(11 models in total)

All models except:
Full model

All 11 models All models except:
𝐺𝐻𝐺

Benchmark (by OLS)
+ all TVP-MR models
(11 models in total)

All models except:
𝐴𝑁 , 𝐴𝑆

All models except:
𝐴𝑁

All models except:
𝐺𝐻𝐺, 𝑆𝑜𝑙𝑎𝑟, Full model

Benchmark (by OLS)
+ all CP-QR models
(11 models in total)

All models except:
𝐺𝐻𝐺, 𝐴𝑁

All 11 models All 11 models

Benchmark (by OLS)
+ all TVI-QR models
(11 models in total)

Benchmark (by OLS) Benchmark (by OLS),
Benchmark variation

All 11 models

Benchmark (by OLS)
+ all TVP-QR models
(11 models in total)

Benchmark (by OLS) All models except:
𝐴𝑁 , Full model

All models except:
Benchmark (by OLS)

Greenhouse Gases
(6 models in total)

CP-MR TVI-MR, CP-QR CP-QR, TVI-QR,
TVP-QR

Well-mixed
Greenhouse Gases
(6 models in total)

CP-MR All models except:
TVI-QR, TVP-QR

CP-QR, TVI-QR,
TVP-QR

Methane Emissions
(6 models)

CP-MR, TVI-MR, TVP-MR All models except:
TVI-QR, TVP-QR

TVI-QR

Nitrous Oxide
(6 models in total)

All models except:
TVI-QR, TVP-QR

All models except:
TVI-QR, TVP-QR

TVI-QR, TVP-QR

Aero Naturals
(6 models in total)

CP-MR TVI-MR, CP-QR TVI-QR, TVP-QR

Aerosols
(6 models in total)

All models except:
TVI-QR, TVP-QR

All models except:
TVI-QR, TVP-QR

All models except:
CP-MR, TVP-MR

Atlantic Multidecadal
Oscillation
(6 models in total)

CP-MR All models except:
TVI-QR, TVP-QR

CP-QR, TVI-QR, TVP-QR

Solar Irradiance
(6 models in total)

CP-MR, TVP-MR TVI-MR, CP-QR CP-QR, TVI-QR, TVP-QR

Notes: results obtained with a confidence level of 80% and 5000 bootstrap replications.
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