
Persistent Cycles and Long-run Covariability in Paleoclimate

Time Series

Vasco J. Gabriel, University of Victoria, Canada

Luis F. Martins, ISCTE - Instituto Universitário de Lisboa, Portugal and CIMS, UK

Anthoulla Phella, University of Glasgow, UK

This version: November 2023

Abstract

Motivated by the presence of a strong cyclical component in paleoclimate data, this paper

considers the problem of conducting cointegration inference when the data contains very large

and persistent cycles. Our first contribution is to show, analytically and through Monte

Carlos simulations, that while point estimation remains consistent, commonly applied tests

no longer are valid when the data contains persistent cycles. Our second contribution is

empirical: we propose the use of the long-run covariability approach of Müller & Watson

(2018) to quantify low-frequency comovement amongst a range of paleoclimate times series.

These methods allow us to focus on the long run properties of the data, bypassing short and

medium run fluctuations, while being agnostic regarding the order of integration of the time

series. We provide new estimates for the long-run relationship between temperatures and CO2,

concluding that in the long-run a 100 ppm increase in CO2 levels would raise temperatures

by around 1◦C. Finally, we illustrate how joint modelling of this set of paleoclimate time

series can be carried out by factor analysis and how long-term projections about temperature

increases and ice-sheet retreat can be constructed.

Keywords: Paleoclimate data; Glaciar cycles; Equilibrium climate sensitivity; Low frequency

analysis.
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1 Introduction

The analysis of paleoclimate data has played an important role in informing the debate around

the causes of climate change and in quantifying equilibrium climate sensitivity (i.e., the long-term

global temperature change in response to increases in atmospheric CO2 concentrations from pre-

industrial levels). Indeed, the correct determination of the time series properties of paleoclimate

data is crucial to ascertain the long term drivers of Earth’s climate and, through appropriate

(formal) statistical procedures, to establish a baseline for its evolution, therefore providing a

useful contrast with recent anthropogenic-driven climate change (see Covey et al., 1996, Lea,

2004, Knutti et al., 2017, inter alia). In this regard, we argue that Milankovitch cycles (i.e.,

the role played by Earth’s orbital movements, which affects solar radiation), while important

in explaining the complex dynamics of glacial/interglacial cycles, may present non-negligible

challenges for the study of the long-run features of climate data.

A strand of the literature has focused on the application of cointegrated vector autoregressions,

making use of inherent error-correction mechanisms to model long-run relationships between

climate and orbital geometry; for example, Kaufmann & Juselius (2013) and Kaufmann & Pretis

(2020, 2021) find support for a long-run equilibrium driven by solar insolation, but disturbed

by interactions among components of the climate system (see also Miller, 2019 for measurement

issues associated with paleoclimate data). However, evidence for the presence of stochastic trends

in the relevant time series is mixed at best. Several papers report results that are consistent

with the presence of a stochastic trend (Gordon, 1991, Woodward & Gray, 1993, Woodward &

Gray, 1995, Gordon et al., 1996, Kärner, 1996). Conversely, many other studies suggest that the

data is consistent with the presence of a deterministic trend with possibly highly persistent noise

(Bloomfield & Nychka, 1992, Bloomfield, 1992, Baillie & Chung, 2002, Fomby & Vogelsang, 2002).

The results in Davidson et al. (2016), for example, do not support the hypothesis of integrated

behaviour.

The consequences of uncertainty around the order of integration of the series of interest for

the purpose of cointegration analysis are well known in the literature.1 Elliott (1998) discusses

the robustness of cointegration methods when the regressors are near-unit processes, finding that

while point estimation remains consistent, hypothesis testing based on the assumption of exact

unit roots may lead to highly misleading results under slight deviations from the unit root bench-

mark. Furthermore, Pesaran et al. (2001) propose a cointegration test that bypasses pre-testing

for unit roots, therefore allowing for uncertainty about whether regressors are stationary or non-

stationary. More recently, Dou & Müller (2021) generalize the local-to-unity framework, showing

that it can approximate well a large class of models that generate substantial persistence not dis-

similar to I(1) processes. On the other hand, Duffy & Simons (2023) characterize cointegration

1The literature on near-unit roots is extensive, see the recent survey by Phillips (2021).
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based on impulse response functions in a way that long run relationships are identified even the

series are not exact unit roots.

In a similar vein, and inspired by nature of paleoclimatic time series, we examine the conse-

quences of the presence of large, persistent cycles for cointegration inference. We do so analytically

and by means of Monte Carlo simulations, demonstrating that, under a variety of DGPs for per-

sistent cycles in a VECM setting, ML point estimation remains consistent, but converging at

rate-
√
T , not at a rate-T as in the standard cointegration approach. Moreover, the trace and

max-eigenvalue cointegration tests will also diverge, therefore suggesting that the data is station-

ary and the variables should be modelled in levels rather than in first-differences. These results

are, to some extent, akin to the problem of cointegration with non-unit root regressors.

Indeed, the importance of modelling persistent cycles in climate time series has been long

recognized in the climate literature, see Mitchell (1976). Several papers attempt to decompose

the variability of the paleoclimate data in the frequency domain, see Mann & Lees (2019), Muller

& MacDonald (1997), Wunsch (2008), Meyers et al. (2008) and Ditlevsen et al. (2020), inter alia.

More recently, Proietti & Maddanu (2022) proposes an alternative parametric approach through

the fractional sinusoidal waveform process.

Given that persistent cycles have the potential to lead to misleading cointegration inference,

we propose to study the long-run comovement between temperatures and CO2 by employing

recently developed methods that highlight low-frequency covariability of time series; see Müller

& Watson (2018) and Müller & Watson (2021), MW henceforth. Indeed, we suggest that vari-

ation in paleoclimate time series is dominated by glaciation cycles and therefore contain only

limited information about the very long-run relation between temperatures and CO2. Using the

procedures of MW allows us to isolate a small number of low-frequency trigonometric weighted

averages, which are then used to conduct inference about the long-run (co)variability of temper-

atures and CO2. Moreover, in order to attenuate “curse-of-dimensionality” issues, we allow for

a group of effects to be “partialled out”, so that we are able hone in on the long-run relationship

between temperatures and CO2 while controlling for orbital forcing.

This approach is quite novel and distinctive in this literature and there are several advan-

tages in using these low-frequency techniques. First, they allow us to focus on time spans that

go beyond cyclical dynamics and thus obtain better estimates of long-run coefficients that are

uncontaminated by short or medium run variations. Second, the methodology is flexible in that

we can conduct inference on bivariate or multivariate low-frequency features of several climate

variables. Third, these methods are fairly robust to the persistence patterns of paleoclimate data,

permitting combinations of nonstationary, near-nonstationary or stationary series, thus circum-

venting the need to (pre) test for unit roots and cointegration. Indeed, the data transformations

are approximately Gaussian and therefore standard inference tools and confidence intervals can

be employed. Finally, the construction of long horizon forecasts is relatively straightforward, thus
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allowing us to complement the scenario analysis in Castle & Hendry (2020).

Put simply, the method consists in obtaining low-frequency weighted averages of the data by

using trigonometric projections that ensure approximate Gaussianity of the transformed series.

Inference is then based on a (relatively) small number q of low-frequency averages, whereby

correlation or regression coefficients (and respective standard errors) can be computed in the

usual way. The choice of q determines the cyclicality that the researcher wishes to study. In

our case, we are agnostic about the choice of q and suggest selecting q such that covariability is

maximized. As it turns out, in our case q ranges from 16 to 20, which indicates spans of data

between 80,000 to 100,000 years, consistent with the cyclicality in paleoclimate data.

Thus, we start by obtaining measures of long-run covariability between temperatures and

levels of CO2, with our results suggesting that correlation is indeed strong and quite significant,

with a 90% confidence interval of [0.90, 0.98], while the long-run regression coefficient is estimated

at around 0.09. Given that the exclusively bivariate focus is likely to lead to overestimation, we use

an extension of the MW approach that allows us to control for measures capturing orbital forcing,

i.e., a selection of control variables is “partialled out” prior to the application of low-frequency

projections. The resulting confidence intervals for the regression coefficient of temperatures on

CO2 range between 0.048 and 0.106, and therefore not too dissimilar to the results found in

Castle & Hendry (2020).

We also pursue the alternative approach of summarizing relevant exogenous information by

extracting a common factor driving orbital forcing and CO2 levels, with these results confirming

our previous findings. Finally, emulating Castle & Hendry (2020), we present long-term forecasts

for temperatures and ice-volume that can be constructed from low-frequency (multivariate) factor

models, conditioning on (anthropogenically determined) current levels of CO2 concentrations,

which are far higher than those typical during previous glaciar cycles. Our results suggest a

steady increase in temperatures, coupled with a substantial decline in ice volumes well below

historical minima, pointing towards an ice-free planet under current CO2 levels.

The paper is organised as follows. Section 2 provides a brief description of the data and a

set of models that generate persistent cycles, used in section 3 to analyse the implications for

cointegration inference within a VECM setup. In section 4, we explore the low-frequency inference

procedures of MW using paleoclimate data, presenting baseline results for the simple bivariate

relationship between temperatures and CO2 levels, as well estimations considering additional

controls, which can either be “partialled out” or encapsulated into a common factor extracted

via principal component analysis. Furthermore, we discuss multivariate low-frequency analysis

and forecasting of paleoclimate time series, while section 5 offers some concluding remarks.
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2 Data, Related Literature and Models

To motivate the discussion, we begin this section with an overview of the paleoclimatic data,

highlighting the main features, namely persistent cyclicality and comovement. We then consider

simple models that generate marked cyclical components, which will be used in section 3 to study

their effects on cointegration analysis.

2.1 Data

We focus on three paleoclimate time series recently investigated in Davidson et al. (2016), Castle

& Hendry (2020, Ch. 6) and Proietti & Maddanu (2022): these are ice cores reconstructions of

temperatures, CO2 atmospheric levels and ice volume. The first two series are sourced from the

European Project for Ice Core in Antarctica (EPICA) (Jouzel et al., 2007; Loulergue et al., 2008;

Lüthi et al., 2008), with CO2 measured in ppm (parts per million, where 1 ppm= 7.8 gigatonnes

of CO2, while the ice volume series is from Lisiecki & Raymo (2005). In addition, and following

Kaufmann & Juselius (2013), we consider standard ice-age orbital drivers, namely Eccentricity

(Ec), Obliquity (Ob) and Precession (Pr).

The period comprises 800,000 years (800 kyr), with all observations adjusted to the common

EDC3 time scale and linearly interpolated for missing observations. The total sample size in 1000

year intervals is thus T = 801 with the last 100 observations (i.e. 100,000 years, ending 1000

years before the present) used to evaluate the predictive ability of our models (see Kaufmann &

Juselius, 2013; Davidson et al., 2016; Castle & Hendry, 2020 for further details on the construction

of the data, as well as Miller, 2019 for the consequences of interpolation on subsequent statistical

analysis).

(a) Temperature (b) CO2

Figure 1: Temperatures and CO2 concentration levels

The most striking feature of the paleoclimate series is their cyclicality, i.e. significant recurring

comovements, such that temperature and CO2 levels stay below their mean for long periods during
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glaciations (see Figure 1), with the opposite pattern for ice volume. As extensively discussed

in Davidson et al. (2016), this behaviour makes it difficult to reconcile with the cointegration

approach used to study long-run relationships and followed in much of the literature. In fact,

it could be argued that glacial cycles cycles are the long-run movements in the data, as they

play the most prominent role, recurring every 80.000-100.000 years (although not in a completely

regular fashion).

Modelling paleoclimatic ice core data is an inherently difficult task because the structural

relationship between orbitally-induced insolation and seasons in the paleoclimate rests on semi-

quantitative arguments. For example, using filtered data, Lisiecki (2010) and Kawamura et al.

(2010) present evidence that strongly suggests a relationship between orbital variables based on

their frequency spectra. On the other hand, Rial (1999) suggests that the eccentricity signal

acts as a frequency modulator for ice volume and argues why therefore certain peaks in the ice

volume spectrum are missing. These approaches do not establish a direct relationship between

variables by means of a statistical model, but rather present circumstantial evidence and physical

mechanisms in favour of one. In contrast, Imbrie & Imbrie (1980) establish a formal, albeit de-

terministic, model which, to date, offers the cleanest direct relationship between orbital variables

and ice volume on Earth, with a broad consensus in the literature regarding the likely non-linear

nature of the relationship.

Aside from the role of orbital variation in driving ice ages, considerable attention has been

devoted to the interplay of temperatures, ice volume and atmospheric concentrations of CO2. The

treatment of the latter and, in particular, whether it should be treated as a forcing variable or

an endogenous response, has been subject of some debate. Lea (2004) and Jaccard et al. (2016),

for example, suggest that orbital forcings drive variations in temperatures, which in turn affect

ice volume and how much trapped CO2 is released into the atmosphere. In turn, Davidson et al.

(2016) find that CO2 and other greenhouse gases are Granger-caused by temperatures.

Consequently, Castle & Hendry (2020) model these variables as a jointly endogenous system,

with orbital forcing variables deemed to be strongly exogenous. They find evidence of an endoge-

nous response of CO2 to orbital forcing, as well as support for a ’weak’ form of the Milankovitch

hypothesis, i.e. in order to account for all aspects of glacial cycles, one needs to also consider

nonlinear interactions between the different orbital components (in line with the physics literature

cited above).

Nevertheless, the features in the data remarked above raise the following questions:

1. To what extent the strong dynamics of persistent cycles (such as those displayed in Figure 1)

impair cointegration analysis?

2. Once these (exogenous) cycles are taken into account, how can one quantify with precision

the relationship between temperatures and CO2?
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This section and the next attempt to provide an answer to the first question, while section 4

deals with 2. Given its importance for accurate climate sensitivity projections, our focus is on

inference about the long-run relationship between temperature and gases concentrations, so in

order to abstract from the admittedly difficult-to-model cyclical component, we propose using

the low-frequency “filtering” procedures of MW.

2.2 Simple Models for Persistent Cycles

As discussed in the preceding sub-section and in the wider literature, orbital variables (and,

to a large extent, paleoclimatic variables) possess very persistent cycles. Proietti & Maddanu

(2022) recently proposed the fractional sinusoidal waveform process to model the strong cyclical

component, such that parameters that regulate the amplitude and the cycle phase follow fractional

noise processes. We present alternative, potentially simpler, models, distinguishing deterministic

from stochastic laws.

Periodic Deterministic and Stochastic Cycles As a simple way to capture the data

properties, we first consider the following model:

yt = µ+ δt cos

(
λπ

t

T

)
+ θut, with ut = ρut−1 + εt, t = 2, ..., T, (1)

where λ > 2 is constant, δt can be time-varying and εt is a white noise (WN) with unit variance.2

The number of cycles λ/2, each with periodicity 2T/λ, is assumed to be constant, whereas the

expected cycle’s range [µ − δt, µ + δt] can vary over time, both properties being present in the

data reviewed in section 2.1. The parameters θ and ρ control the amount and persistence of noise

around the cycle, respectively, and are assumed to follow an AR(1) process, possibly a near-unit

root process.

The component that is left with the most general specification as possible is δt, which controls

the cycle’s range. This can be deterministic or stochastic, and with different orders of convergence.

For data that remains relatively stable around µ, such that δt is of the same order of ut, it is

assumed that, as T → ∞, 1√
T

∑⌊rT ⌋
t=1 δt → δ̃ (r) , i.e.,

∑⌊rT ⌋
t=1 δt = O(

√
T ) or Op(

√
T ) for any

r ∈ [0, 1]. In this case, the scaled demeaned partial sum

T−1/2

⌊rT ⌋∑
t=1

(yt − µ) =⇒ cos (λπr) δ̃ (r) + (λπr)

∫ 1

0
sin (λπrs) δ̃ (s) ds+ σuW (r) , (2)

as T → ∞, for r ∈ [0, 1] (see Bierens, 1994, Lem. 9.6.3, p. 200). If δt is deterministic, one can

consider δt =
δ√
T
, where δ̃ (r) = δ ⌊r⌋, or a linear time trend δt = δ t

T 3/2 , with δ̃ (r) = δ 1
2r

2. If δt

2Alternative models for ut could have been considered. For the purpose of this paper, we assume the AR(1)

specification but, in general, ut is such that 1√
T

∑⌊rT⌋
t=1 ut =⇒ σuW (r) , r ∈ [0, 1] , where σ2

u is the long-run

covariance of ut and W (r) is a standard Wiener process, with [·] denoting the integer part of ·.
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is stochastic, it can be assumed, for example, that δt =
1
T

∑t
j=1 ϵj , where ϵt is a WN

(
0, σ2

ε

)
, so

that δ̃ (r) = σε
∫ r
0 W (s) ds.

The paleoclimatic data possesses cycles with wider ranges and therefore
∑⌊rT ⌋

t=1 δt = O(
√
T ) or

Op(
√
T ) is not a reasonable assumption to make in this case. For example, if δt is a constant

(δt = δ), we have
∑T

t=1 δt = Op(T ) and T−1/2
∑T

t=1 (yt − µ) = O(
√
T ) + T−1/2

∑T
t=1 ut because

1

T

T∑
t=1

cos

(
λπ

T
t

)
→ sin (λπ)

λπ
, as T → ∞. (3)

For integer λ > 2, 1
T

∑T
t=1 cos

(
λπ
T t
)
→ 0, as T → ∞. Hence, δt cos

(
λπ t

T

)
dominates over θut and

the normalization is the first moment of the series

1

T

T∑
t=1

(yt − µ)
p→ δ

sin (λπ)

λπ
. (4)

Similarly, for deterministic δt = δ0
(
1− δ1

t
T

)
we have 1

T

∑T
t=1 δt → δ0

(
1− δ1

1
2

)
, and for stochastic

(scaled random walk) δt = δ0 +
1
T

∑t
j=1 ϵj , δ0 ̸= 0, we have 1

T

∑T
t=1 δt → δ0.

Persistent Cycle-Near-Unit Root Decomposition Gabriel et al. (2023) propose an

alternative model to capture persistent cycles based on a simple cycle/noise decomposition where,

instead of a cosine function, the cyclical component follows a latent AR(2) process with complex

unit roots. Specifically,

yt = µ+ zt + γut, t = 1, ..., T, (5)

with

zt = ϕ1zt−1 + ϕ2zt−2 + ηvt, (6)

ut = ρut−1 + εt, (7)

where vt and εt are two mutually independent WN(0, 1) . Here, µ controls for the level and γ for

the amount of noise in the data. zt is a nonstationary AR(2) process where ϕ1 and ϕ2 control for

the (time-invariant) frequency of the cycles (following Bierens, 2001, ϕ2 = −1 and ϕ1 = 2 cos (ϕ)

so that the cycle lasts 2π/ϕ periods). The parameter η controls for the time-variability of the

cycle’s range (if η = 0 the cycle has constant range; the larger η, the larger variability the cycle

exhibits) and z1, z2 are constants with probability 1 – z2 controls for the cycle’s range after, for

the sake of simplicity, assuming P (z1 = 0) = 1. Finally, ut is a stationary near-unit root AR(1)

process that smoothly fluctuates around the cycle component.3

From Bierens (2001), imposing ϕ2 = −1, ϕ1 = 2 cos (ϕ) and η = 1, Equation (6) implies

zt =
1

sin (ϕ)

t∑
j=1

sin (ϕ (t+ 1− j)) εj + dt; (8)

dt = A cos (ϕt) +B sin (ϕt) + C, (9)

3The pair z1, z2 can also be random Op(1) processes, but in that case the cycle’s range is random. As earlier,

alternative models for ut can be considered. Notice that if ρ = 1, ut is a nonstationary process and therefore yt

itself would resemble a I(1) process (the cycle zt would not be clearly defined in the data).
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where A,B,C depend on initial conditions. Thus, yt is explained through

yt = µ+ dt +
1

sin (ϕ)

t∑
j=1

sin (ϕ (t+ 1− j)) εj + γ

ρtu0 +

t−1∑
j=0

ρjvt−j

 , (10)

which may include a trend dt (see Gabriel et al. (2023) for details about the properties of the

model and the estimation and inference of parameters).

3 Cointegration Analysis in the Presence of Persistent Cycles

In this Section, we study the properties standard cointegration inference for models with I(1)

variables when the true data includes persistent cycles. We use Monte Carlo simulations for a

variety of models and derive analytical results for a toy model.

3.1 Monte Carlo Simulations

For the sake of simplicity, and following the existing literature, we consider the bivariate vector

error correction model △yt

△xt

 =

 α1

α2

 (1, β2)

 yt−1

xt−1

+

 u1t

u2t

 , t = 2, ..., T, (11)

the Maximum Likelihood Estimator (MLE) for α1, α2, β2 and the trace eigenvalue test for coin-

tegration. We study the bias of the MLE (empirical mean and standard deviation) and for β̂2 we

compute distributional quantiles (τ ∈ [0, 1] with empirical quantiles τ = 0.05, 0.50, and 0.95) for

two convergence rates, T (β̂2−β2) and
√
T (β̂2−β2), to address the typical cases of nonstationary

and stationary data. For the trace test, we compute the percentage of times there is evidence of

stationary data, r = 2 (rejections of spurious and cointegration regressions). The sample sizes

are T = 50, 100, 800, 10000 to cover the cases of small samples, our paleoclimate application, as

well as large samples. The number of replications is set to 5000.

To better understand the consequences of estimating the model described in (11) when the

data {xt, yt}Tt=1 includes persistent cycles, we begin by presenting the results for the standard

cointegration case where variables are nonstationary unit root processes. Let xt = xt−1 + uxt,

where uxt is a Gaussian WN(0,1), and yt = xt + vt, where vt is also a Gaussian WN(0,1),

independent of uxt. That is, the true coefficients are α′ = (α1, α2) = (−1, 0) and β′ = (1, β2) with

β2 = −1. The results are in Table 1.

Now, we consider distinct models for xt with persistent cycles, keeping the same specifi-

cation as before, where yt = xt + vt, so that α′ = (−1, 0) and β2 = −1. In the first case,

xt = δt cos
(
λπ t

T

)
+ εt, where εt is a Gaussian WN(0,σ2

ε), with a deterministic δt. Regarding

the model in Equation (1), we assume µ = ρ = 0 and θ = 1. For constant δt = δ, by visual

inspection of temperatures and CO2 emissions, where T is around 800, we consider the following
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Table 1: Estimation of the Bivariate ECM - Nonstationary Unit Root Processes

trace β2 T (β2 + 1)
√
T (β2 + 1) α1 α2

T mean mean stdev τ = 0.05 τ = 0.5 τ = 0.95 τ = 0.05 τ = 0.5 τ = 0.95 mean stdev mean stdev

50 0.049 -1.000 0.051 -3.901 -0.012 3.896 -0.551 -0.001 0.551 -0.534 0.872 -0.008 0.145

100 0.047 -1.000 0.024 -3.965 0.003 3.862 -0.396 3.8e-04 0.386 -0.483 0.890 -0.010 0.101

800 0.051 -1.000 0.003 -3.837 0.063 3.708 -0.135 0.002 0.131 -0.397 0.917 -0.003 0.035

10000 0.054 -1.000 2.3e-04 -3.839 -0.028 3.729 -0.038 -2.8e-04 0.037 -0.330 0.944 -0.001 0.009

Notes: Model (11); trace is the percentage of rejections of spurious and cointegration regressions using the trace test.

parameterization: δ = 7 or δ = 80, λ = 6 or λ = 16, and σε = 1 or σε = 7. For time-varying δt,

the scaled linear trend is δt = δ0
(
1− δ1

t
T

)
for δ0 = 7, and δ1 = −1 or δ1 = −2, for fixed λ = 16

and σε = 1.

The results are in Table 2. There are three main findings that stand out. First, the MLE

is not biased, with β̂2 converging faster to the true value than α̂1, α̂2. Second, the rate at which(
β̂2 − β2

)
converges in distribution is not the T -rate, but rather the

√
T -rate, and, as expected,

the 5th and 95th quantiles depend on the model’s specification. Putting together these two

findings and contrasting with the results in Table 1, we conclude that fitting a standard VECM

with data that follows the model in Equation (1) leads to unbiased estimates, but with erroneous

standard errors, confidence sets, and therefore inference. The third finding pertains to the trace

cointegration test: clearly, by testing for cointegration in the standard VECM, one will conclude

that the data is stationary (the exception being the case of T = 50, 100 when δ = 7, λ = 6, σε = 1,

where there is evidence for cointegrated I(1) data). Therefore, if the data is stationary, one should

model variables in levels instead of first-differences. In general, these main conclusions are robust

to the particular specification of the deterministic δt.

In Table 3, we present results for the same model for xt, but with σε = 1 and with a stochastic

δt. We consider a scaled random walk δt = γ+δt−1+
1
T ξt, with ξt ∼WN

(
0, σ2

ξ

)
, both with no drift

(γ = 0) and with a drift (γ = 0.01). Moreover, from the AR(1) specification δt = ϕ0+ϕ1δt−1+ξt,

the cases of a WN
(
ϕ0, σ

2
ξ

)
, a stationary AR(1) with ϕ1 = 0.5, and a near-unit root process,

where ϕ1 ≡ ϕ1,T = 1− 1
T . The conclusions are the same as those obtained for a deterministic δt,

with the exceptions of the scaled random walk with a drift and of the near-unit root process – in

these two cases, the range of the cycles is not stable, which goes against what is observed in the

paleoclimatic data.

Finally, we study the properties of the standard VECM (11) with α′ = (−1, 0) and β′ = (1,−1)

when xt follows the persistent cycle-near-unit root decomposition. The cycle component is defined

by Equation (6) with xt evolving as a nonstationary AR(2) process with complex unit roots and,

for comparability, we also consider xt as following the fractional sinusoidal waveform process of

Proietti & Maddanu (2022). In the first case, µ = 0, z1 = 0, z2 = 0.25, γ = 1, η = 0.001, ρ = 0.95

and ϕ1 = 1.9960534, ϕ2 = −1.4 In the AR(2) model, xt = 0.02+ ϕ1xt−1 + ϕ2xt−2 +0.01ut, where

4Results are very similar for ϕ1 = 1.6355457, ϕ2 = −0.7 or for ϕ1 = 1.411423, ϕ2 = −0.5.
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Table 2: Estimation of the Bivariate ECM - Periodic Deterministic Cycle

trace β2 T (β2 + 1)
√
T (β2 + 1) α1 α2

T mean mean sd τ = 0.05 τ = 0.5 τ = 0.95 τ = 0.05 τ = 0.5 τ = 0.95 mean sd mean sd

δ = 7;λ = 6;σε = 1

50 0.005 -1.000 0.029 -2.488 0.030 2.413 -0.351 0.004 0.341 -0.572 0.899 -0.053 0.335

100 0.012 -1.000 0.020 -3.484 0.019 3.376 -0.348 0.002 0.337 -0.583 0.837 -0.042 0.168

800 1 -1.000 0.007 -9.346 -0.125 9.082 -0.330 -0.004 0.321 -0.623 0.783 -0.017 0.048

10000 1 -1.000 0.002 -34.035 -0.086 34.259 -0.340 -8.6e-04 0.342 -0.924 0.381 -0.002 0.014

δ = 7;λ = 16;σε = 1

50 1 -0.999 0.031 -2.581 0.050 2.599 -0.365 0.007 0.367 -0.614 1.041 -0.075 0.669

100 1 -1.000 0.020 -3.489 -0.016 3.412 -0.348 -0.001 0.341 -0.551 0.886 -0.055 0.284

800 1 -1.000 0.007 -9.280 0.090 9.420 -0.328 0.003 0.333 -0.648 0.763 -0.017 0.049

10000 1 -1.000 0.002 -32.642 -0.471 33.478 -0.326 -0.004 0.334 -0.923 0.384 -0.002 0.014

δ = 80;λ = 16;σε = 7

50 1 -0.999 0.002 -0.219 0.004 0.221 -0.031 6.4e-04 0.031 -0.895 7.298 0.024 7.290

100 1 -1.000 0.001 -0.303 -0.002 0.295 -0.030 -2.0e-04 0.029 -0.809 3.046 0.008 2.997

800 1 -1.000 6.1e-04 -0.800 0.005 0.817 -0.028 2.0e-04 0.028 -0.576 0.896 -0.092 0.362

10000 1 -1.000 1.7e-04 -2.837 -0.042 2.905 -0.028 -4.2e-04 0.029 -0.481 0.883 -0.040 0.091

δ0 = 7; δ1 = −1;λ = 16;σε = 1

50 1 -0.999 0.019 -1.611 0.031 1.612 -0.227 0.004 0.228 -0.595 1.256 -0.028 0.960

100 1 -1.000 0.013 -2.255 -0.010 2.166 -0.225 -0.001 0.216 -0.475 0.969 -0.023 0.401

800 1 -1.000 0.004 -5.971 0.102 6.091 -0.211 0.003 0.215 -0.492 0.872 -0.018 0.049

10000 1 -1.000 0.001 -21.236 -0.161 21.748 -0.212 -0.001 0.217 -0.731 0.682 -0.004 0.013

δ0 = 7; δ1 = −2;λ = 16;σε = 1

50 1 -0.999 0.014 -1.168 0.018 1.152 -0.165 0.002 0.163 -0.632 1.499 -0.008 1.279

100 1 -1.000 0.009 -1.625 -0.014 1.575 -0.162 -0.001 0.157 -0.463 1.032 0.013 0.528

800 0 -1.000 0.003 -4.351 0.081 4.445 -0.153 0.002 0.157 -0.448 0.895 -0.015 0.052

10000 1 -1.000 9.6e-04 -15.476 -0.086 15.988 -0.154 -8.6e-04 0.159 -0.598 0.801 -0.005 0.013

Notes: Model (1) with δt deterministic; trace: See Table 1

Table 3: Estimation of the Bivariate ECM - Periodic Stochastic Cycles

trace β2 T (β2 + 1)
√
T (β2 + 1) α1 α2

T mean mean sd τ = 0.05 τ = 0.5 τ = 0.95 τ = 0.05 τ = 0.5 τ = 0.95 mean sd mean sd

γ = 0; δ0 = 7;λ = 16;σξ = 1

50 1 -0.999 0.031 -2.560 0.014 2.643 -0.362 0.002 0.373 -0.641 1.040 -0.076 0.678

100 1 -0.999 0.020 -3.332 -0.006 3.532 -0.333 -6.8e-04 0.353 -0.557 0.879 -0.053 0.282

800 1 -0.999 0.007 -9.189 0.130 9.372 -0.324 0.004 0.331 -0.649 0.764 -0.018 0.048

10000 1 -1.000 0.002 -33.230 0.192 33.205 -0.332 0.001 0.332 -0.925 0.378 -0.001 0.014

γ = 0.01; δ0 = 7;λ = 16;σξ = 1

50 1 -0.999 0.030 -2.465 0.015 2.547 -0.348 0.002 0.360 -0.611 1.070 -0.083 0.696

100 1 -0.999 0.019 -3.091 -0.004 3.294 -0.309 -4.4e-04 0.329 -0.556 0.884 -0.044 0.298

800 0.999 -0.999 0.004 -5.605 0.079 5.784 -0.198 0.002 0.204 -0.498 0.870 -0.018 0.050

10000 0 -1.000 2.2e-04 -3.636 -0.006 3.701 -0.036 -6.5e-05 0.037 -0.270 0.962 -0.004 0.013

ϕ0 = 7;ϕ1 = 0;λ = 16;σξ = 1

50 1 -0.999 0.031 -2.497 0.015 2.618 -0.353 0.002 0.370 -0.632 1.049 -0.085 0.681

100 1 -0.999 0.021 -3.389 0.002 3.526 -0.338 2.5e-04 0.352 -0.563 0.883 -0.064 0.300

800 1 -0.999 0.007 -9.172 0.197 9.343 -0.324 0.007 0.330 -0.662 0.788 -0.023 0.059

10000 1 -1.000 0.002 -33.441 0.084 33.153 -0.334 8.4e-04 0.331 -0.871 0.490 -0.003 0.017

ϕ0 = 7;ϕ1 = 0.5;λ = 16;σξ = 1

50 1 -0.999 0.015 -1.236 0.008 1.284 -0.174 0.001 0.181 -0.589 1.484 -0.021 1.229

100 1 -0.999 0.010 -1.663 -0.002 1.739 -0.166 -2.0e-04 0.174 -0.451 1.026 -0.021 0.509

800 0.999 -0.999 0.003 -4.526 0.045 4.663 -0.160 0.001 0.164 -0.524 0.856 -0.019 0.059

10000 1 -1.000 9.9e-04 -16.558 -0.013 16.350 -0.165 -1.3e-04 0.163 -0.623 0.782 -0.005 0.015

ϕ0 = 7;ϕ1 =
(
1 − 1

T

)
;λ = 16;σξ = 1

50 1 -1.000 0.001 -0.120 0.002 0.120 -0.017 3.1e-04 0.017 -1.032 12.229 -0.082 12.224

100 0.899 -1.000 4.9e-04 -0.080 -5.1e-04 0.083 -0.008 -5.1e-05 0.008 -0.869 9.833 0.078 9.831

800 0 -1.000 2.1e-05 -0.027 1.0e-04 0.028 -9.7e-04 3.8e-06 0.001 -0.981 3.607 -0.017 3.597

10000 1 -1.000 4.9e-07 -0.008 -3.9e-05 0.008 -8.1e-05 -3.9e-07 8.2e-05 -1.007 1.029 -0.018 1.016

Notes: Model (1) with δt stochastic; trace: See Table 1

11



Table 4: Estimation of the Bivariate ECM - Alternative Models with Stochastic Cycles

trace β2 T (β2 + 1)
√
T (β2 + 1) α1 α2

T mean mean sd q05 q50 q95 q05 q50 q95 mean sd mean sd

Persistent cycle-near unit root decomposition

50 0.040 -1.000 0.051 -4.006 -0.005 3.991 -0.566 -8.2e-04 0.564 -0.602 0.835 -0.034 0.147

100 0.055 -0.999 0.028 -4.406 -0.025 4.543 -0.440 -0.002 0.454 -0.634 0.791 -0.026 0.101

800 1 -0.999 0.008 -11.188 0.171 11.391 -0.395 0.006 0.402 -0.819 0.573 -0.006 0.035

10000 1 -1.000 0.002 -38.917 -0.228 39.253 -0.389 -0.002 0.392 -0.999 0.032 -3.1e-06 0.010

AR(2) process with complex unit roots: ϕ1 = 1.9960534;ϕ2 = −1

800 6.0e-04 -1.000 0.005 -7.158 0.022 6.969 -0.253 7.7e-04 0.246 -0.920 0.394 7.7e-04 0.010

10000 0.914 -1.000 0.001 -16.406 -0.389 16.825 -0.164 -0.003 0.168 -0.957 0.287 1.8e-04 0.006

AR(2) process with complex unit roots: ϕ1 = 1.6355457;ϕ2 = −0.7

800 0 -0.999 0.112 -147.065 0.098 148.402 -5.199 0.003 5.246 -1.000 0.044 6.1e-06 5.9e-04

10000 1 -1.000 0.031 -525.754 -6.460 534.869 -5.257 -0.064 5.348 -0.999 0.012 6.8e-07 1.6e-04

AR(2) process with complex unit roots: ϕ1 = 1.411423;ϕ2 = −0.5

800 0 -0.999 0.156 -203.144 0.339 204.569 -7.182 0.012 7.232 -1.000 0.044 4.8e-06 4.7e-04

10000 1 -1.000 0.043 -732.138 -11.932 737.315 -7.321 -0.119 7.373 -0.999 0.012 3.4e-07 1.3e-04

Fractional sinusoidal waveform process: Temperatures

50 0 -0.999 0.048 -3.983 0.056 4.026 -0.563 0.008 0.569 -0.667 0.768 -0.001 0.017

100 0 -0.999 0.034 -5.598 0.027 5.709 -0.559 0.002 0.571 -0.854 0.536 -2.5e-04 0.012

800 0 -1.000 0.012 -16.210 -0.093 15.951 -0.573 -0.003 0.564 -1.000 0.043 -9.2e-05 0.004

10000 1 -1.000 0.003 -55.627 0.496 56.793 -0.556 0.005 0.567 -0.999 0.012 3.5e-05 0.001

Fractional sinusoidal waveform process: CO2 emissions

50 0.981 -0.942 7.321 -580.065 2.905 583.686 -82.033 0.410 82.545 -0.997 0.173 -6.1e-06 0.004

100 1 -0.940 4.503 -728.347 2.376 740.218 -72.834 0.237 74.021 -0.999 0.123 2.2e-05 0.002

800 1 -0.978 1.231 -1.6e+03 2.604 1.6e+03 -56.618 0.092 58.207 -0.999 0.042 -1.7e-05 9.9e-04

10000 1 -1.003 0.297 -4.8e+03 -30.469 4.8e+03 -48.940 -0.304 48.541 -0.999 0.012 7.4e-06 2.7e-04

Notes: Models (5), AR(2) with complex UR, and Fractional sinusoidal; trace: See Table 1

ut = 0.2ut−1 + εt, εt ∼WN(0, 1) , and we allow (ϕ1, ϕ2) to take three different combinations to

capture distinct cycle lenghts: (1.9960534,−1) , (1.411423,−0.5) , and (1.6355457,−0.7) .5 The two

fractional sinusoidal waveform processes are generated according to the model and the estimated

coefficients for paleoclimatic temperatures and CO2 emissions (we refer the reader to Proietti &

Maddanu, 2022 for details). Once again, the main conclusions obtained earlier hold true for these

data generating processes. Noticeably, from the trace test there is a switch from cointegration to

stationary data as T gets large.

3.2 A Theoretical Result

The Monte Carlo simulations suggest that the estimation of the standard VECM when the data

has persistent cycles provides unbiased estimators, a different rate of convergence in distribution

and, consequently, erroneous inference, as well as cointegration tests that identify variables as

5The results for T = 50, 100 have been left out because in these cases the cycles are not noticeable in the time

series.
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being stationary. We now show this result analytically for a simple model.

Consider as the true data generating process the following bivariate vector time series process:

Assumption 1: Let zt = (yt, xt)
′, where yt = xt + uyt and xt = δ cos

(
λπ t

T

)
+ uxt, with ut =

(uyt, uxt) following a bivariate standard normal distribution and uyt and uxt are mutually

independent with variances σ2
y and σ2

x, respectively.

That is, in first differences the models are

△yt = δ

[
cos

(
λπ

t

T

)
− cos

(
λπ

(t− 1)

T

)]
+ (△uxt +△uyt) (12)

△xt = δ

[
cos

(
λπ

t

T

)
− cos

(
λπ

(t− 1)

T

)]
+△uxt (13)

and, equivalently, as the bivariate model

△zt = µtι+ αβ′zt−1 + ũt, t = 2, ..., T (14)

where

µt ≡ µt (δ, λ) = δ

[
cos

(
λπ

t

T

)
− cos

(
λπ

(t− 1)

T

)]
; (15)

ι′ = (1, 1);α′ = (−1, 0) ;β′ = (1,−1) ; ũt = (△uxt + uyt,△uxt)
′. (16)

The misspecified model is the standard bivariate cointegrated ECM with yt = xt + uyt and

xt = xt−1 + uxt, that is, △yt

△xt

 =

 −1

0

 (1,−1)

 yt−1

xt−1

+

 uyt

uxt

 , t = 2, ..., T, (17)

which ignores the time-varying intercept (cyclical component) µt (δ, λ) and the errors are mis-

specified. From the standard Johansen (1988, 1991, 1995) approach, the model is

△zt = αβ′zt−1 + ut, t = 2, ..., T, (18)

where ut ∼ i.i.d.N2 [0,Ω] , with Ω nonsingular, the log-likelihood for r = 1 (cointegration) is

l̂T = −0.5T ln
(
1− λ̂

)
− 0.5T ln (det (S00,T )) (19)

plus a constant, where θ̂ is the largest solution of the generalized eigenvalue problem

det
[
θS11,T − S10,TS

−1
00,TS01,T

]
= 0 (20)

with

S00,T =
1

T

T∑
t=1

△zt△z′t; S11,T =
1

T

T∑
t=1

zt−1z
′
t−1; S01,T =

1

T

T∑
t=1

△ztz
′
t−1, (21)

S10,T = S′
01,T , and the ML estimator for β is the eigenvector associated with the largest eigenvalue

θ̂ :

S10,TS
−1
00,TS01,T β̂ = θ̂S11,T β̂. (22)

The next Lemma provides the limiting result for the matrices Sij,T , i, j = 0, 1 when the data

follows model (1) for a constant δ.
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Lemma 1: Under Assumption 1, as T → ∞,

S00,T
p→ 2Υ;S11,T

p→ 1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
ι+Υ;S01,T , S10,T

p→ −Υ, (23)

where Υ =

 (σ2
x + σ2

y

)
σ2
x

σ2
x σ2

x

 , ι =

 1 1

1 1

 . For λ > 2 integer, S11,T
p→ 1

2δ
2ι+Υ.

Proof. See details in the Appendix.

From the previous Lemma, and following the Lemma 2 in Andersson et al. (1983), the ordered

solutions θ̂1 ≥ θ̂2 of the generalized eigenvalue problem in Equation (20) converge in probability

to the ordered solutions θ1 ≥ θ2 of det
[
θ
(
1
2δ

2
(
1 + sin(2λπ)

2λπ

)
ι+Υ

)
−Υ′ (2Υ)−1Υ

]
= 0. These

are provided in the next Theorem. Contrary to the standard cointegration approach, there are

no zero solutions and, in particular, the largest θ̂ converges in probability to 1
2 for all admissible

model parameters. Moreover, unlike the standard cointegration approach, since the smallest θ2

is not zero, T θ̂2 will not converge in distribution to a random variable, but rather grows to

infinity and, therefore, the trace and the maximum eigenvalue tests will also diverge as T → ∞.

The implication of this is that the cointegration tests will provide evidence of rank = 2, i.e.

suggesting that the data is stationary and therefore there is no need to take first differences, as

it is assumed in the case of the VECM model.

Theorem 1: Under Assumption 1, as T → ∞, the ordered solutions θ̂1 ≥ θ̂2 of the gener-

alized eigenvalue problem in Equation (20) converge in probability to θ1 = 1
2 and θ2 =

1
δ2

σ2
x

(
1+

sin(2λπ)
2λπ

)
+2

< 1
2 , respectively. For λ > 2 integer, θ2 = 1

δ2

σ2
x
+2

. Moreover, T θ̂2 → ∞, as

T → ∞.

Proof. The details are omitted, as the result is straightforward to obtain.

As a consequence of Theorem 1, the next Theorem shows that the MLE of α̂ is consistent

and β̂ is still consistent, but it converges at a rate-
√
T and not at a rate-T, as in the standard

cointegration approach. The main reason is because S11,T is Op(1), something distinct from the

I(1) case where 1
T S11,T = Op(1).

Theorem 2: Under Assumption 1, as T → ∞, β̂
p→ b, where the normalized b is given by

b = (1,−1)′ , and α̂
p→ α, where α′ = (−1, 0) . Moreover, as T → ∞,

√
T β̂ = Op (1) and

T β̂ → ∞.

Proof. See the details in the Appendix.

Moreover, while not covered in these, the Monte Carlo simulations suggest that both for δt

not constant, and for other more general models, the MLE of β̂ remains consistent, but the rate

of convergence is
√
T , slower than T, the standard one.
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4 Long-Run Covariability and Low-Frequency Inference

As discussed in the previous section, not accounting for the statistical properties of persistent

cycles may lead to erroneous inferences within the cointegration framework, popularized in climate

econometrics by Kaufmann et al. (2013) and Kaufmann & Juselius (2013). To overcome this

issue, and with the objective of obtaining sensible (and testable) baseline estimates for climate

sensitivity, we propose to use the low-frequency “filtering” framework of MW.

Indeed, low-frequency variation can be extracted by using relatively small number q of weighted

averages, where the weights are deterministic (and known) low-frequency trigonometric series.

Consider the simplest case of a single time series xt observed over t = 1, ..., T , letting Ψj(s) =
√
2cos(jsπ), so that Ψj(t/T ) has period 2T/j, with Ψ(s) = (Ψ1(s),Ψ2(s), ...,Ψq(s))

′ a ℜq valued

function, with Ψ(T ) = (Ψ((1 − 1/2)/T ),Ψ((2 − 1/2)/T ), ...,Ψ((T − 1/2)/T ))′ a T × q matrix

obtained by evaluating the function at s = (t − 1/2)/T for t = 1, ..., T . Then, we can obtain

low-frequency projections by obtaining the fitted values from running OLS regressions of xt on

Ψ(T ), such that x̂t = x̄ + Ψ((t − 1/2)/T )′XT , where x̄ and XT are OLS coefficients, the latter

having the simple form XT = T−1
∑T

t=1Ψ((t−1/2)/T )′xt, such that the jth regression coefficient

Xjt is the jth cosine transform of (x1, x2, ..., xT )
′.

Müller & Watson (2018) show that this can be extended to a multivariate setting, in a way

that long-run correlation (which we will denote by ρL) or regression coefficients can be obtained

in a standard way based on the q cosine projections. Considering the scarcity of low-frequency

information in the data, it is natural that only a small number of projection coefficients are em-

ployed to capture low-frequency variability, in turn leading to a typical “small-sample” problem.

An advantage of these procedures is that statistical inference is straightforward and is applicable

to both weakly and highly persistent time series, with little requirements regarding error and

model assumptions.

4.1 Long-Run Covariability

We examine the long-run covariability of temperatures and CO2 emissions by computing the

low-frequency correlation ρL and the bivariate regression coefficient βL measuring the long-run

relationship between temperatures and CO2. From visual inspection of both series, we will assume

that our time span of interest is smaller than 150 (150,000 years) and greater than 75 (75,000

years) datapoints. This then corresponds to a range of about q = 10 to q = 21 cosine transforms,

respectively. The maximum span is by default 1,596,000 years. Thus, we take an agnostic view

as to what the “long run” is by not imposing a specific value for q, not least because, beyond

Milankovitch cyclicality, there is no consensus in climate science on what this should be. Hence,

we present results obtained for q = 10, ..., 21 in Table 5.

From these results, we observe that there is strong evidence that CO2 and temperature are
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Table 5: Long-Run (LR) Covariation Measures for CO2 and Temperature

q LR correlation (ρL) LR regression coefficient (βL) LR regression st. error (σL)

10 0.865 [0.450, 0.960] 0.068 [0.025, 0.090] 0.395 [0.279, 0.809]

11 0.828 [0.500, 0.947] 0.068 [0.026, 0.093] 0.447 [0.313, 0.811]

12 0.841 [0.450, 0.952] 0.069 [0.028, 0.094] 0.447 [0.317, 0.864]

13 0.841 [0.450, 0.947] 0.072 [0.028, 0.096] 0.464 [0.332, 0.866]

14 0.865 [0.550, 0.953] 0.077 [0.040, 0.100] 0.498 [0.364, 0.825]

15 0.877 [0.637, 0.959] 0.082 [0.048, 0.102] 0.516 [0.382, 0.874]

16 0.945 [0.900, 0.980] 0.090 [0.069, 0.100] 0.533 [0.386, 0.921]

17 0.937 [0.850, 0.974] 0.092 [0.073, 0.104] 0.621 [0.459, 1.013]

18 0.940 [0.850, 0.974] 0.093 [0.072, 0.105] 0.627 [0.455, 1.005]

19 0.943 [0.850, 0.974] 0.094 [0.072, 0.105] 0.628 [0.463, 1.029]

20 0.943 [0.850, 0.974] 0.095 [0.075, 0.106] 0.643 [0.475, 1.033]

21 0.937 [0.850, 0.974] 0.095 [0.074, 0.107] 0.663 [0.496, 1.123]

Notes: x is CO2 and y is temperature; results based on the Posterior Median and a Coverage Probability of 0.90

in square brackets; ρL is the long-run correlation coefficient, βL is the long-run slope coefficient and σL the

standard error.

highly correlated over the long run. Indeed, the in-sample long-run correlation ρ̂L of the two

series is positive and very large – always above 0.83, achieving a maximum of 0.95 with q = 16

and remaining high thereafter, with the confidence intervals noticeably narrowing for q > 15.6

The estimated long-run regression coefficient β̂L is, as expected, positive, thus confirming that

an increase in CO2 emissions of 1ppm is associated with an estimated increase in temperatures

in the long-run. Note, however, that the slope coefficient is very sensitive to the choice of q,

monotonically increasing from 0.068◦C for q = 10 to 0.095◦C with q = 21.

Even though the above results give us a reasonable range of values, for the sake of simplicity,

we define a criterion that allows us to select the most reasonable long-run measures: we pick q

such that the estimated long-run correlation is the largest and the range for the 90% confidence set

is the narrowest. For the pair (CO2, Temperature) this corresponds to q = 16 (in bold, Table 5),

implying a periodicity smaller than 99.75 (i.e. of about 100,000 years). Although admittedly

ad-hoc, the basic idea is to pick the q for which the data seems to be most informative. Note

that for q < 16, the 90% confidence sets for the correlation and the regression coefficient are

substantially wider, therefore suggesting that this strategy is a sensible one.

6To put it in perspective, it is worth mentioning that in their empirical applications with macro variables, Müller

& Watson (2018) found for fixed q only a few number of pairs of series with such a large degree of covariability.

Despite the differences in terms of the observed data, it seems that climate data has a more significant long-term

covariability compared to macroeconomic data.
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Thus, when q = 16, the long-run correlation equals 0.945 with a corresponding 90% confidence

set of [0.900, 0.980], while the regression coefficient is 0.090, with a standard error 0.533. This

value is somewhat large, especially when compared to the ones found in the literature – c.f. Castle

& Hendry, 2020, who estimated an impact of 0.060◦C. The lower bound of the 90% confidence

set [0.069, 0.100] is close to the Castle & Hendry (2020) estimate, but does not include it.

For the sake of completeness, we also computed the long-run measures for the bivariate rela-

tionships of ice volume with temperatures or CO2 emissions, in Table 6. As in the previous case,

q < 16 delivers wide confidence sets for the pair {Ice, Temperature}. The in-sample long-term

correlation for q = 16 equals −0.871 with a confidence set of [−0.946,−0.638] (similar results

are obtained for q > 16) and an estimated long-run regression coefficient of −4.991. For {Ice,

CO2} the correlation is also large (−0.918 with an interval of [−0.945,−0.800]) and the regression

coefficient is −55.343, highlighting the long-run association between higher CO2 emissions and

reduced ice volumes.

Table 6: Long-Run Covariation Measures for Ice-Temperature and Ice-CO2

q LR correlation (ρL) LR regression coefficient (βL) LR regression st. error (σL)

Ice and Temperature

16 -0.871 [-0.946, -0.638] -4.991 [-6.190, -3.745] 0.814 [0.608, 1.196]

Ice and CO2

22 -0.918 [-0.945, -0.800] -55.343 [-66.609, -44.553] 9.891 [7.080, 14.917]

Notes: In the first row x is Ice and y is temperature, in the second x is Ice and y is CO2; results based on the

Posterior Median and a Coverage Probability of 0.90 in square brackets

The value of 0.090 for the long run coefficent relating temperatures to CO2 and the corre-

sponding 90% confidence set are probably overestimated. The most likely explanation is that

the standard bivariate Müller & Watson (2018) approach is not taking into account the effect

of exogenous variables on temperatures, namely orbital forcing and non-linear functions thereof.

Therefore, in order to be able to assess the long-run covariability between temperature and CO2

emissions without omitting orbital forcing, we extend the Müller & Watson (2018) approach so

that these effects are partialled out – i.e. we first regress CO2 on additional forcings, then tem-

peratures on the residuals for the first-stage partialling out.7 We do so because of the “small

sample” problem induced by using only a small number of trigonometric projections. To avoid

compounding this problem by adding additional regressors, and given that in our application we

can safely treat orbital forcing as exogenous, we suggest this approach as a convenient way of

addressing this issue.

7It is straightforward to show that a a variant of the Frisch-Waugh-Lovell also holds in the case of the MW

framework (results available upon request).
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The choice of the set of exogenous regressors zt is not clear-cut, therefore we follow the existing

literature and try different options to check the robustness and sensitivity of the results to the

choice made. As in Castle and Hendry (2020), we assume that CO2 depends, at most, on lagged

temperatures and ice volume and the current and lagged non-linear impacts of the exogenous

orbital variables, i.e., the largest set for zt is

zt = (Tempt−1, Icet−1, Ot, Ot−1), where (24)

O = (Ec,Ob, Pr,EcOb,EcPr, PrOb,Ec2, Ob2, P r2). (25)

For comparison, we also consider smaller sets by dropping those variables that were not found

statistically significant in explaining CO2 levels in previous studies.8

In Table 7, we present the long-run covariability measures for temperatures and (distinct)

CO2 residuals for the “optimal” q, in the sense that the correlation is the largest and the range

for the confidence set is the narrowest.9 First, we note that the selected q is always 16, the

same value as in the simple bivariate case. Then, the results differ depending on whether lagged

temperatures and ice volume as determinants for CO2 emissions are included or not. If included,

we only find a significant long-run relationship between temperatures and partialled out CO2

for a confidence set of 67%. Even in that case, the long-run correlation is not large (0.317)

and the long-run regression coefficient equals 0.108. Once we include only the exogenous orbital

variables, the results become very consistent. The long-run correlation is large (around 0.8) and

the long-run regression coefficient is about 0.076 with a 90% confidence set of [0.048, 0.103].

The main takeaways are that 1) regardless of whether or not orbital effects are partialled out,

the long-run correlation between temperatures and CO2 emissions is very large (above 0.7); 2)

with respect to the long-run impact of CO2 emissions on temperature levels, we obtain larger point

estimates than those reported in Castle & Hendry (2020), which can be rather interpreted as a

lower bound. Castle & Hendry (2020) also obtain a solved long-run coefficient of 0.066◦C increase

in temperatures for a 1 ppm increase in the CO2 emissions, whereas our long-run estimated impact

ranges from about 0.070◦C to 0.100◦C, depending on the exact specification.

Moreover, as a complementary alternative to partialling out, we also consider long-run co-

variability measures between temperature and a common factor fw
t capturing the main dynamics

of all (or part of) the other variables in the model, i.e. CO2, ice volume and orbital variables.

Following Castle and Hendry (2020), we assume that temperatures in period t are explained by

the set of variables wt = (Tempt−1, CO2t, Ect, EcObt, EcObt−1, EcPrt) and formulate a factor

model in which low-frequency measures of Tempt are related with the main common factor of

wt. In Table 8, we present the results for f̂w
t extracted from wt, also considering different subsets

8Interestingly enough, we did not find important differences in the residuals from CO2t = θ′zt + vt compared

to the observed CO2 emissions.
9Results for other values of q produce qualitatively and quantitatively similar results, and are available upon

request.
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Table 7: Long-Run Covariation Measures for vt and Temperature

q LR correlation (ρL) LR regression coefficient (βL) LR regression st. error (σL)

zt = (Tempt−1, Icet−1, Ot, Ot−1)

16 0.317 [-0.129, 0.539] 0.108 [-0.014, 0.254] 1.680 [1.265, 2.440]

0.317 (0.131, 0.443) 0.108 (0.036, 0.188) 1.680 (1.413, 2.065)

zt = (Ot, Ot−1)

16 0.744 [0.502, 0.917] 0.077 [0.048, 0.105] 1.009 [0.762, 1.479]

zt = Ot

16 0.744 [0.511, 0.917] 0.078 [0.048, 0.106 ] 1.012 [0.847, 1.245]

zt =
(
Ec,Ob,EcOb,EcPr,Ob2

)
t

16 0.804 [0.564, 0.918] 0.076 [0.048, 0.103] 0.980 [0.733, 1.425]

zt = (Ect, Ect−1, Obt−1, EcObt−1, Ob2t )

16 0.798 [0.512, 0.917] 0.075 [0.046, 0.102] 1.002 [0.752, 1.463]

Notes: Results based on the Posterior Median and a Coverage Probability of 0.90 in square brackets or 0.67 in

parentheses.

of its elements, using q = 16 as before (results are similar for any q > 15).

First, we note that the percentage of the variance (PTV) explained by the principal component

is almost 100%, even for the largest of sets wt. On the other hand, analysing the corresponding

factor loadings (displayed in λ̂), the loading associated with CO2t is essentially one, while the

other loadings are quite small and close to zero. These two results together mean that the principal

component f̂w
t captures the dynamic features of CO2t levels after extracting the information from

the remaining variables. Thus, in essence, we accomplish the goal of obtaining low-frequency

estimates of the relationship between temperatures and CO2 levels in a much similar way to the

partialling out procedure expounded above.

Thus, considering the results so far, our estimates point to long run temperature increases

between 6◦C and 10◦C. These are in the neighbourhood of, but larger than, the estimates of

Castle & Hendry (2020), Kaufmann & Juselius (2013) and Knutti et al. (2017)).

4.2 Low-Frequency Factor Model and Long-Term Forecasts

In the previous section, we focused on the long-run relationship between temperatures and CO2

concentration levels – first, a stripped down low-frequency bivariate analysis, followed by ap-

proaches that allow us to control for exogenous forcing. In this section we turn our attention to

modelling the joint dynamics of the whole climate system by employing the low-frequency factor

models developed by Müller & Watson (2021), which, as a useful by-product, allow us to compute

19



Table 8: Long-Run Covariation Measures for f̂w
t and Temperature

q LR correlation (ρL) LR regression coefficient (βL) LR regression st. error (σL)

wt = (Tempt−1, CO2t, Ect, EcObt, EcObt−1, EcPrt)

PTV = 97.688; λ̂ = (0.102, 0.994, 0.000, 0.003, 0.003, 0.027)

16 0.945 [0.900, 0.980] 0.090 [0.069, 0.099] 0.528 [0.383, 0.912]

wt = (CO2t, Ect, EcObt, EcPrt)

PTV = 97.914; λ̂ = (0.999, 0.000, 0.003, 0.027)

16 0.945 [0.900, 0.980] 0.090 [0.069, 0.100] 0.532 [0.386, 0.920]

wt = (CO2t−1, CO2t, Icet−1, Icet)

PTV = 98.712; λ̂ = (0.706, 0.708,−0.010,−0.010)

16 0.943 [0.900, 0.974] 0.063 [0.048, 0.071] 0.558 [0.404, 0.962]

wt = (CO2t, Icet)

PTV = 99.999; λ̂ = (0.999,−0.015)

16 0.945 [0.900, 0.980] 0.090 [0.069, 0.100] 0.533 [0.387, 0.922]

Notes: Results based on the Posterior Median and a Coverage Probability of 0.90 in square brackets. PTV is the

percentage of the total variance explained by the principal component. λ̂ is the principal component coefficients

(loadings)

long-range forecasts.10 Indeed, given the very low-frequency nature of our data, as well as the

mixture of endogenous and exogenous variables we study, we deem this forecasting model to be

more appropriate than a standard dynamic factor model. Next, we present the main features

of the model and analyze the estimated factor loadings, after which we focus on long-horizon

predictive distributions for the variables of interest, under relevant scenarios for CO2 levels.

Following Müller &Watson (2021) and Müller et al. (2020), the model for the set of observables

xt ∈ ℜn is

xt = µ+ λfx
t + et, (26)

where fx
t denotes the (scalar) unobserved common factor(s), λ = (λ1, ..., λn) contains the factor

loadings, et represents a vector of mutually independent errors that captures the residual vari-

ability in xt, and µ = (µ1, ..., µn) is the intercept. Moreover, fx
t follows a local-level model, ej,t ,

j = 1, ..., n stationary I(dj) models and {fx
t , e1,t, ..., en,t} are independent. The local-level model

is the sum of uncorrelated I(0) and I(1) processes with common long-run variance σ2. The scale

of fx
t and λ are not separately identified and the factor loading λ1 is normalized to unity. The

estimation of the model is carried out by Bayesian methods, assuming the same priors for the

parameters as in Müller & Watson (2021) (see paper for details). Once the posterior distribution

is recovered, an additional advantage of this approach is that we can analyse how the relationships

10See also Müller & Watson (2016) for a discussion on long-horizon prediction intervals and Müller et al. (2020)

for an interesting application about the long-run path of GDP for a list of 113 countries.
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differ across quantiles - we consider the median, the tails at 5% and 95% and two intermediate

quantiles, 17% and 83%.

We consider three models: i) a simple bivariate one with the main variables xt = (Tempt, CO2t)
′

with n = 2; ii) a model that adds ice volume, i.e. xt = (Tempt, CO2t, Icet)
′, n = 3; and iii) follow-

ing Castle & Hendry (2020), we consider a model with exogenous orbital variables which includes

significant non-linear interactions between the drivers, such that xt = (Tempt, CO2t, Icet, Ect, Obt,

EcPrt, Ob2t )
′, n = 7.

The results are displayed in Table 9. We can see that CO2 is a strong driver of low-frequency

comovements with temperatures, particularly at the highest quantiles. Interestingly, the salience

of CO2 remains strong even when orbital variables are included. Indeed, as expected and in

accordance with the Milankovich hypothesis, orbital variables capture a significant proportion

of the joint variation. In particular, note that the interaction EcPrt has a loading of 1.68 –

the amount of solar energy is proportional (up to a phase) to Ec sinPr and, to first order,

sinx ≈ x which explains the loading. Nevertheless, CO2 levels still have a non-negligible impact

for quantiles 83 and 95. As anticipated, variation in ice volume goes in an opposite direction,

while the joint effects of nonlinear interactions amongst the orbital variables appear to be the

most significant contributors to low-frequency movements in the respective set of variables in xt.

Table 9: Factor Loadings for the Low-Frequency Factor Model

Variables PostMean PostQ0.05 PostQ0.17 PostQ0.50 PostQ0.83 PostQ0.95

xt = (Tempt, CO2t)
′; n = 2

Temp 1.00 1.00 1.00 1.00 1.00 1.00

CO2 9.29 7.98 8.66 9.37 9.96 10.37

xt = (Tempt, CO2t, Icet)
′; n = 3

Temp 1.00 1.00 1.00 1.00 1.00 1.00

CO2 9.30 8.00 8.66 9.37 9.97 10.39

Ice -0.15 -0.19 -0.17 -0.15 -0.12 -0.11

xt = (Tempt, CO2t, Icet, Ect, Obt, EcPrt, Ob2t )
′; n = 7

Temp 1.00 1.00 1.00 1.00 1.00 1.00

CO2 1.50 -1.78 -0.40 1.50 3.42 4.79

Ice 1.36 -1.92 -0.56 1.33 3.35 4.71

Ec 1.35 -1.99 -0.66 1.37 3.33 4.65

Ob 0.78 -1.64 -0.62 0.56 2.32 3.76

EcPr 1.68 -1.70 -0.34 1.59 3.63 5.43

Ob2 1.44 -1.85 -0.49 1.43 3.36 4.74

Notes: PostQ stands for ”posterior quantile”.

Having documented and quantified the low-frequency relationship between temperatures and
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CO2 levels, and given the recent developments in the climate debate, it is important to understand

how temperatures can evolve in the long-term for specific scenarios of CO2 emissions. Here, we

follow Castle & Hendry (2020) by conditioning on the relatively stable path of orbital variables and

on a stable level of 385 ppm for CO2 (consistent with current anthropogenically induced levels) to

obtain long-term conditional forecasts for temperatures and ice volume using the low-frequency

factor models estimated in the previous section. We consider the horizon of 50 observations

(50,000 years, half of the lowest period associated with the optimal q as explained in section 4.1,

which is a relatively long horizon period, given such extremely low frequency type of data.

In Figure 2 we have the conditional forecasts for temperatures, while Figure 3 displays projec-

tions for ice volumes, both in the case of n = 7. The projections for temperatures are close to the

sample mean, but, crucially, predicted to increase. Turning to the long term of implications for

ice volumes, we confirm the prediction that ice sheets will tend to reduce for high levels of CO2

(naturally in tandem with the higher temperatures predicted above). See Diebold & Rudebusch

(2021) for a discussion, albeit at shorter horizons.

Figure 2: Conditional Forecasts of Temperatures

5 Concluding Remarks

This paper puts the spotlight on the cyclicality of paleoclimate data. On the one hand, we show

that, despite point estimation remaining unaffected, ignoring persistent cycles leads to erroneous

cointegration inference, a result akin to the issue of near-integrated regressors well known in the

cointegration literature. On the other hand, if one is interested in equilibrium climate sensitivity

long-range estimates, we suggest using the low-frequency filtering procedures of Müller & Watson

(2018) and Müller & Watson (2021), which circumvent some of the pitfalls regarding the presence

of persistent cycles, spurred mainly by orbital forcings, and the uncertainty around the correct

order of integration of the data.
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Figure 3: Conditional Forecasts of Ice Volumes

Our results confirm the strong relationship between temperatures and CO2 for a periodicity of

around 100,000 years. The long-run coefficient thus obtained validates, to a large extent, previous

equilibrium climate sensitivity exercises conducted by several authors. If anything, our findings

suggest that the recent simulations of Castle & Hendry (2020) are a lower bound, indicating that

warming due to the increase of CO2 concentration levels can be even more substantial. This

holds even when orbital forcings are taken into account, either by partialling out or by means of

an extracted common factor. Joint modelling of all time series allows us to consider a long-term

scenario exercise, in which we show the extent of acceleration in temperature increases, as well

as ice-sheet recession.

In this setup, the choice of q is usually left at the researchers’ discretion. We proposed a “data-

driven” approach, whereby we picked q such that the target long-run correlation is maximized.

An interesting issue to consider is the choice of q when two or more time series display different

cyclicality - it is not clear whether different q’s should be selected for each series, or whether a

common q would be preferable. We leave this for future research.

We should acknowledge the shortcomings of this approach. Indeed, by focusing narrowly on

the long-run relationship between temperatures and CO2, we make no attempt to model the

mechanisms that link orbital forcing to temperatures, which is obviously important from a theo-

retical and an empirical point of view. Our first set of results suggest that orbital variables play a

role, albeit minor compared to CO2, in driving temperatures, at least in a linear setting, despite

the inclusion of non-linear orbital terms. Reassuringly, the multivariate factor model of Section 4

reveals a stronger association between temperature and orbital variables, with the posterior mean

estimates confirming that certain orbital variables help explain temperature variation, especially

the interaction between eccentricity and precession.

Naturally, there are alternative approaches that the applied researcher may wish to consider.

For instance, work by Friedrich et al. (2023), studying the relationship between radiative forcings
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and global temperatures, employs a high-dimensional VAR that, much like in our empirical

analysis, allows for the order of integration to be ignored. Still in a (structural) VAR setting, Duffy

& Simons (2023) characterize cointegration through impulse response functions, thus allowing

long-run relationships to be identified even if the data does not contain exact unit roots - it

would certainly be interesting to analyze how paleoclimate data fares with this method. Another

work that is in spirit very similar to the approach we propose here is the paper by Blazsek

& Escribano (2022), who use score-driven ice-age models, which control for omitted exogenous

variables and extreme events and report results very similar to Castle & Hendry (2020) (and not

too distinct from our own).

Moreover, while we highlight the issue of persistent cyclicality for cointegration inference,

the cyclical models we study are fairly simple and a great deal more work is required to embed

them into a VECM framework. One approach that certainly deserves further attention is the

recent work by Kang & Marmer (2023), which considers highly persistent stochastic cycles, po-

tentially spanning substantial fractions of the sampling period, and therefore very close to the

characteristics exhibited by paleoclimate data.
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6 Appendix

6.1 Lemma A

Under Assumption 1, as T → ∞,
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△yt△xt
p→ 2σ2

x (28)

1

T

T∑
t=1

y2t−1
p→ 1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
+ σ2

x + σ2
y (29)

1

T

T∑
t=1

x2t−1
p→ 1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
+ σ2

x (30)

1

T

T∑
t=1

yt−1xt−1
p→ 1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
+ σ2

x (31)

1

T

T∑
t=1

△ytyt−1
p→ −σ2

x − σ2
y (32)

1

T

T∑
t=1

△xtxt−1
p→ −σ2

x;
1

T

T∑
t=1

△xtyt−1
p→ −σ2

x (33)

1

T

T∑
t=1

△ytxt−1
p→ 1

2
δ2
(
1 +

cos (λπ) sin (λπ)

λπ

)
− 1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
− σ2

x (34)

6.2 Proof of Lemma A

Under Assumption 1, as T → ∞, for 0 < r ≤ 1, we have 1√
T

∑⌊rT ⌋
t=1 xt = 1√

T

∑⌊rT ⌋
t=1 yt =

1√
T

∑⌊rT ⌋
t=1 uxt =

1√
T

∑⌊rT ⌋
t=1 uyt = Op (1) . The results in Lemma A follow from

1

T

T∑
t=1

△y2t

=
1

T

T∑
t=1

(
δ cos

(
λπ

t

T

)
− δ cos

(
λπ

(t− 1)

T

)
+△uxt +△uyt

)2

=
1

T

T∑
t=1

[
δ2 cos2

(
λπ

t

T

)
+ δ2 cos2

(
λπ

(t− 1)

T

)
− 2δ2 cos

(
λπ

t

T

)
cos

(
λπ

(t− 1)

T

)
+2δ cos

(
λπ

t

T

)
△uxt + 2δ cos

(
λπ

t

T

)
△uyt − 2δ cos

(
λπ

(t− 1)

T

)
△uxt − 2δ cos

(
λπ

(t− 1)

T

)
△uyt

+ (△uxt)
2 + (△uyt)

2 + 2△uxt△uyt

]
p→ 1

2
δ2
(
1 +

cos (λπ) sin (λπ)

λπ

)
+

1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
− δ2

(
1 +

cos (λπ) sin (λπ)

λπ

)
+ 2σ2

x + 2σ2
y

=
1

2
δ2
(
sin (2λπ)− 2 cos (λπ) sin (λπ)

2λπ

)
+ 2σ2

x + 2σ2
y = 2

(
σ2
x + σ2

y

)
;
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1

T

T∑
t=1

△x2t

=
1

T

T∑
t=1

(
δ cos

(
λπ

t

T

)
− δ cos

(
λπ

(t− 1)

T

)
+△uxt

)2

=
1

T

T∑
t=1

[
δ2 cos2

(
λπ

t

T

)
+ δ2 cos2

(
λπ

(t− 1)

T

)
− 2δ2 cos

(
λπ

t

T

)
cos

(
λπ

(t− 1)

T

)
+2δ cos

(
λπ

t

T

)
△uxt − 2δ cos

(
λπ

(t− 1)

T

)
△uxt + (△uxt)

2

]
p→ 1

2
δ2
(
1 +

cos (λπ) sin (λπ)

λπ

)
+

1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
− δ2

(
1 +

cos (λπ) sin (λπ)

λπ

)
+ 2σ2

x

=
1

2
δ2
(
sin (2λπ)− 2 cos (λπ) sin (λπ)

2λπ

)
+ 2σ2

x = 2σ2
x;

1

T

T∑
t=1

△yt△xt

=
1

T

T∑
t=1

(
δ cos

(
λπ

t

T

)
− δ cos

(
λπ

(t− 1)

T

)
+△uxt +△uyt

)(
δ cos

(
λπ

t

T

)
− δ cos

(
λπ

(t− 1)

T

)
+△uxt

)

=
1

T

T∑
t=1

[
δ2 cos2

(
λπ

t

T

)
+ δ2 cos2

(
λπ

(t− 1)

T

)
− 2δ2 cos

(
λπ

t

T

)
cos

(
λπ

(t− 1)

T

)
+2δ cos

(
λπ

t

T

)
△uxt + δ cos

(
λπ

t

T

)
△uyt − 2δ cos

(
λπ

(t− 1)

T

)
△uxt − δ cos

(
λπ

(t− 1)

T

)
△uyt

+(△uxt)
2 +△uxt△uyt

]
p→ 1

2
δ2
(
1 +

cos (λπ) sin (λπ)

λπ

)
+

1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
− δ2

(
1 +

cos (λπ) sin (λπ)

λπ

)
+ 2σ2

x

=
1

2
δ2
(
sin (2λπ)− 2 cos (λπ) sin (λπ)

2λπ

)
+ 2σ2

x = 2σ2
x;

1

T

T∑
t=1

y2t−1

=
1

T

T∑
t=1

(
δ cos

(
λπ

(t− 1)

T

)
+ (uxt−1 + uyt−1)

)2

=
1

T

T∑
t=1

[
δ2 cos2

(
λπ

(t− 1)

T

)
+ 2δ cos

(
λπ

(t− 1)

T

)
uxt−1 + 2δ cos

(
λπ

(t− 1)

T

)
uyt−1

+ u2xt−1 + u2yt−1 + 2uxt−1uyt−1

]
p→ 1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
+ σ2

x + σ2
y ;
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1

T

T∑
t=1

x2t−1 =
1

T

T∑
t=1

(
δ cos

(
λπ

(t− 1)

T

)
+ uxt−1

)2

=
1

T

T∑
t=1

δ2 cos2
(
λπ

(t− 1)

T

)
+ 2δ cos

(
λπ

(t− 1)

T

)
uxt−1 + u2xt−1

p→ 1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
+ σ2

x;

1

T

T∑
t=1

yt−1xt−1

=
1

T

T∑
t=1

(
δ cos

(
λπ

(t− 1)

T

)
+ (uxt−1 + uyt−1)

)(
δ cos

(
λπ

(t− 1)

T

)
+ uxt−1

)

=
1

T

T∑
t=1

[
δ2 cos2

(
λπ

(t− 1)

T

)
+ 2δ cos

(
λπ

(t− 1)

T

)
uxt−1 + δ cos

(
λπ

(t− 1)

T

)
uyt−1

+u2xt−1 + uxt−1uyt−1

]
p→ 1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
+ σ2

x;

1

T

T∑
t=1

△ytyt−1

=
1

T

T∑
t=1

(
δ cos

(
λπ

t

T

)
− δ cos

(
λπ

(t− 1)

T

)
+ (△uxt +△uyt)

)(
δ cos

(
λπ

(t− 1)

T

)
+ (uxt−1 + uyt−1)

)

=
1

T

T∑
t=1
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δ2 cos

(
λπ

t

T

)
cos

(
λπ

(t− 1)

T

)
− δ2 cos2

(
λπ

(t− 1)

T

)
+δ cos

(
λπ

(t− 1)

T

)
△uxt + δ cos

(
λπ

(t− 1)

T

)
△uyt

+δ cos

(
λπ

t

T

)
uxt−1 − δ cos

(
λπ

(t− 1)

T

)
uxt−1 + δ cos

(
λπ

t

T

)
uyt−1 − δ cos

(
λπ

(t− 1)

T

)
uyt−1

+△uxtuyt−1 +△uytuyt−1 +△uxtuxt−1 +△uytuxt−1]

p→ 1

2
δ2
(
1 +

cos (λπ) sin (λπ)

λπ

)
− 1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
− σ2

x − σ2
y = −σ2

x − σ2
y ;

1

T

T∑
t=1

△xtxt−1

=
1

T

T∑
t=1

(
δ cos

(
λπ

t

T

)
− δ cos

(
λπ

(t− 1)

T

)
+△uxt

)(
δ cos

(
λπ

(t− 1)

T

)
+ uxt−1

)

=
1

T

T∑
t=1

[
δ2 cos

(
λπ

t

T

)
cos

(
λπ

(t− 1)

T

)
− δ2 cos2

(
λπ

(t− 1)

T

)
+δ cos

(
λπ

(t− 1)

T

)
△uxt + δ cos

(
λπ

t

T

)
uxt−1 − δ cos

(
λπ

(t− 1)

T

)
uxt−1 +△uxtuxt−1

]
p→ 1

2
δ2
(
1 +

cos (λπ) sin (λπ)

λπ

)
− 1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
− σ2

x = −σ2
x;
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1

T

T∑
t=1

△ytxt−1

=
1

T

T∑
t=1

(
δ cos

(
λπ

t

T

)
− δ cos

(
λπ

(t− 1)

T

)
+ (△uxt +△uyt)

)(
δ cos

(
λπ

(t− 1)

T

)
+ uxt−1

)

=
1

T

T∑
t=1

[
δ2 cos

(
λπ

t

T

)
cos

(
λπ

(t− 1)

T

)
− δ2 cos2

(
λπ

(t− 1)

T

)
+δ cos

(
λπ

(t− 1)

T

)
△uxt + δ cos

(
λπ

(t− 1)

T

)
△uyt

δ cos

(
λπ

t

T

)
uxt−1 − δ cos

(
λπ

(t− 1)

T

)
uxt−1 +△uxtuxt−1 +△uytuxt−1

]
p→ 1

2
δ2
(
1 +

cos (λπ) sin (λπ)

λπ

)
− 1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
− σ2

x;

and

1

T

T∑
t=1

△xtyt−1

=
1

T

T∑
t=1

(
δ cos

(
λπ

t

T

)
− δ cos

(
λπ

(t− 1)

T

)
+△uxt

)(
δ cos

(
λπ

(t− 1)

T

)
+ (uxt−1 + uyt−1)

)

=
1

T

T∑
t=1

[
δ2 cos

(
λπ

t

T

)
cos

(
λπ

(t− 1)

T

)
− δ2 cos2

(
λπ

(t− 1)

T

)
+δ cos

(
λπ

(t− 1)

T

)
△uxt + δ cos

(
λπ

t

T

)
uxt−1 − δ cos

(
λπ

(t− 1)

T

)
uxt−1

+δ cos

(
λπ

t

T

)
uyt−1 − δ cos

(
λπ

(t− 1)

T

)
uyt−1 +△uxtuyt−1 +△uxtuxt−1

]
p→ 1

2
δ2
(
1 +

cos (λπ) sin (λπ)

λπ

)
− 1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
− σ2

x = −σ2
x.

These results follow from simple convergence of moments. Namely, as T → ∞,

1

T

T∑
t=1

u2xt−1
p→ V (uxt−1) = σ2

x;
1

T

T∑
t=1

(△uxt)
2 p→ V (△uxt) = 2σ2

x

1

T

T∑
t=1

△uxt△uyt
p→ Cov (△uxt,△uyt) = 0;

1

T

T∑
t=1

uxt−1uyt−1
p→ Cov (uxt−1, uyt−1) = 0

1

T

T∑
t=1

△uxtuxt−1
p→ Cov (△uxt, uxt−1) = −σ2

x;
1

T

T∑
t=1

△uxtuyt−1
p→ Cov (△uxt, uyt−1) = 0.

Those involving the trignometric functions are cumbersome but trivial. For example,

1

T

T∑
t=1

δ2 cos2
(
λπ

t

T

)

= δ2
1

T

(
T

2
+

cos
(
(T + 1) λπ

T

)
sin
(
T λπ

T

)
2 sin

(
λπ
T

) )
= δ2

(
1

2
+

cos
(
λπ + λπ

T

)
sin (λπ)

2 sin
(
1
T λπ

)
/ (1/T )

)

→ 1

2
δ2
(
1 +

cos (λπ) sin (λπ)

λπ

)
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because sin
(
λπ 1

T

)
/ (1/T ) → λπ as T → ∞. Similar results are obtained for 1

T

∑T
t=1 δ

2 cos2
(
λπ (t−1)

T

)
and 1

T

∑T
t=1 2δ

2 cos
(
λπ t

T

)
cos
(
λπ (t−1)

T

)
. Moreover,

1

T

T∑
t=1

2δ cos

(
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t

T

)
△uxt
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(
1

T

T∑
t=1
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(
λπ

t

T

)
uxt −

1

T

T∑
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(
λπ

(t− 1)

T
+ λπ

1

T

)
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)
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 1
T

∑T
t=1 cos

(
λπ t

T

)
uxt − cos

(
λπ 1

T

)
1
T

∑T
t=1 cos

(
λπ (t−1)

T

)
uxt−1

+sin
(
λπ 1

T

)
1
T

∑T
t=1 sin

(
λπ (t−1)

T

)
uxt−1



= 2δ


1
T

∑T
t=1 cos

(
λπ t

T

)
uxt

− cos
(
λπ 1

T

) (
1
T

∑T
t=1 cos

(
λπ t

T

)
uxt +

1
T cos (0)ux0 − 1

T cos (λπ)uxT

)
+sin

(
λπ 1

T

) (
1
T

∑T
t=1 sin

(
λπ t

T

)
uxt +

1
T sin (0)ux0 − 1

T sin (λπ)uxT

)


= 2δ


1
T

∑T
t=1 cos

(
λπ t

T

)
uxt

− cos
(
λπ 1

T

) (
1
T

∑T
t=1 cos

(
λπ t

T

)
uxt +

1
T ux0 −

1
T cos (λπ)uxT

)
+sin

(
λπ 1

T

) (
1
T

∑T
t=1 sin

(
λπ t

T

)
uxt − 1

T sin (λπ)uxT

)


= 2δ


cos (λπ) 1

T

∑T
t=1 uxt + (λπ)

∫ 1
0 sin (λπr)

(
1
T

∑⌊rT ⌋
t=1 uxt

)
dr

− cos
(
λπ 1

T

) (
cos (λπ) 1

T

∑T
t=1 uxt + (λπ)

∫ 1
0 sin (λπr)

(
1
T

∑⌊rT ⌋
t=1 uxt

)
dr + 1

T ux0 −
1
T cos (λπ)uxT

)
+sin

(
λπ 1

T

) (
sin (λπ) 1

T

∑T
t=1 uxt − (λπ)

∫ 1
0 cos (λπr)

(
1
T

∑⌊rT ⌋
t=1 uxt

)
dr − 1

T sin (λπ)uxT

)


→ 0.

See Bierens (1994, Lem. 9.6.3, p. 200). A similar proof is done for 1
T

∑T
t=1 2δ cos

(
λπ (t−1)

T

)
△uxt,

1
T

∑T
t=1 δ cos

(
λπ t

T

)
uxt−1, and

1
T

∑T
t=1 δ cos

(
λπ (t−1)

T

)
uxt−1.

6.3 Proof of Lemma 1

From Lemma A,

S00,T =
1

T

T∑
t=1

△zt△z′t =
1

T

T∑
t=1

 △y2t △yt△xt

△xt△yt △x2t


p→ 2

 (σ2
x + σ2

y

)
σ2
x

σ2
x σ2

x

 = 2Υ;

S11,T =
1

T

T∑
t=1

zt−1z
′
t−1 =

1

T

T∑
t=1

 y2t−1 yt−1xt−1

xt−1yt−1 x2t−1


p→

 1
2δ

2
(
1 + sin(2λπ)

2λπ

)
+ σ2

x + σ2
y

1
2δ

2
(
1 + sin(2λπ)

2λπ

)
+ σ2

x

1
2δ

2
(
1 + sin(2λπ)

2λπ

)
+ σ2

x
1
2δ

2
(
1 + sin(2λπ)

2λπ

)
+ σ2

x


=

1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
ι+Υ;
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and

S01,T =
1

T

T∑
t=1

△ztz
′
t−1 =

1

T

T∑
t=1

 △ytyt−1 △ytxt−1

△xtyt−1 △xtxt−1


p→

 −σ2
x − σ2

y −σ2
x

−σ2
x −σ2

x

 = −Υ,

where Υ =

 (σ2
x + σ2

y

)
σ2
x

σ2
x σ2

x

 and ι =

 1 1

1 1

 .

6.4 Proof of Theorem 2

We start by sketching the proof of Theorem 1. Following the Lemma 2 in Andersson et al. (1983)

and our Lemma 1, the ordered solutions θ̂1 ≥ θ̂2 of the generalized eigenvalue problem

det
[
θS11,T − S10,TS

−1
00,TS01,T

]
= 0

converge in probability to the ordered solutions θ1 ≥ θ2 of

det

[
θ

(
1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
ι+Υ

)
−Υ′ (2Υ)−1Υ

]
= 0 ⇔
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 θ
(
1
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2
(
1 + sin(2λπ)

2λπ

)
+
(
σ2
x + σ2

y

))
− 1

2

(
σ2
x + σ2

y

)
θ
(
1
2δ

2
(
1 + sin(2λπ)

2λπ

)
+ σ2

x

)
− 1

2σ
2
x

θ
(
1
2δ

2
(
1 + sin(2λπ)

2λπ

)
+ σ2

x

)
− 1

2σ
2
x θ

(
1
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2
(
1 + sin(2λπ)

2λπ

)
+ σ2

x

)
− 1

2σ
2
x

 = 0 ⇔

det
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(
1
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2
(
1 + sin(2λπ)

2λπ

)
+ σ2

x

)
− 1

2σ
2
x +

(
θσ2

y − 1
2σ

2
y

)
θ
(
1
2δ

2
(
1 + sin(2λπ)

2λπ

)
+ σ2

x

)
− 1

2σ
2
x

θ
(
1
2δ

2
(
1 + sin(2λπ)

2λπ

)
+ σ2

x

)
− 1

2σ
2
x θ

(
1
2δ

2
(
1 + sin(2λπ)

2λπ

)
+ σ2

x

)
− 1

2σ
2
x

 = 0 ⇔

det

 ∆+
(
θσ2

y − 1
2σ

2
y

)
∆

∆ ∆

 = 0,

where ∆ = θ
(
1
2δ

2
(
1 + sin(2λπ)

2λπ

)
+ σ2

x

)
− 1

2σ
2
x. This is clearly very different to the standard Jo-

hansen’s cointegration results. The determinant equals ∆2+
(
θσ2

y − 1
2σ

2
y

)
∆−∆2 =

(
θσ2

y − 1
2σ

2
y

)
∆.

The two roots do not depend on the parameter σ2
y and are given by

θ1 =
1

2
and θ2 =

1

δ2

σ2
x

(
1 + sin(2λπ)

2λπ

)
+ 2

<
1

2
= θ1,

for all admissable σ2
x, λ, δ because δ2

σ2
x

(
1 + sin(2λπ)

2λπ

)
> 0. For any λ such that sin(2λπ)

2λπ = 0 we

have θ2 = 1
δ2

σ2
x
+2

. That is true for integer λ > 2. Again, contrary to the standard cointegration

approach, there are no zero solutions and, in particular, the largest θ̂ converge in probability to

1
2 . Moreover, since θ2 ̸= 0, T θ̂2 will not converge in distribution to a random variable but rather

tends to infinity and therefore the Johansen’s tests will also diverge to infinity as T → ∞.

Now, we can discuss the limiting properties of the estimator (Theorem 2). The ML estimator

for β is the eigenvector associated with the largest eigenvalue θ̂ :

S10,TS
−1
00,TS01,T β̂ = θ̂S11,T β̂.
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The estimator β̂ converges in probability to the eigenvector associated with the largest eigenvalue

θ1 =
1
2 and therefore p lim

T→∞
β̂ = b where b is the solution to

p lim
T→∞

S10,TS
−1
00,TS01,T b = θp lim

T→∞
S11,T b.

It can be easily shown that the normalized b is given by b = (1,−1)′ , which is the true coefficient

in the misspecified bivariate cointegrated ECM. To prove this, we find that the solution b for

θ1 =
1
2 satisfies

1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
(b1 + b2) = 0,

so that for the normalized b1 = 1, we obtain b2 = −1.

For the estimator α̂ we have

α̃ = S01,T β̃
(
β̃′S11,T β̃

)−1
,

where β̃ is the normalized MLE of β̂ (defined below), which converges to

−Υb

(
b′
(
1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
ι+Υ

)
b

)−1

=

 −1

0

 = α.

For

Ω̂ = S00,T − α̃β̃′S10,T ,

it converges to

2Υ + αb′Υ =

 2σ2
x + σ2

y 2σ2
x

2σ2
x 2σ2

x

 ̸=

 σ2
y 0

0 σ2
x

 .

In terms of the limiting distribution of β̂ notice first that the matrix S11,T = 1
T

∑T
t=1 zt−1z

′
t−1

is Op(1), something distinct from the I(1) case where 1
T S11,T = Op(1). In standard cointegration,

the MLE β̂ of β is normalized as β̃ = β̂
(
β′β̂
)−1

β′β and one can write β̃ − β = β⊥UT , where

β′
⊥β = 0 and UT = (β′

⊥β⊥)
−1
(
β′
⊥β̂
)(

β′β̂
)−1

(β′β) , with an expansion

T.UT =
(
T−1β′

⊥S11,Tβ⊥
)−1

β′
⊥
(
S10,T − S11,Tβα

′)Ω−1α
(
α′Ω−1α

)−1
+ op (1)

from which the distribution is derived. But in our setup, this can not be done this way because

S11,T has a different order of integration. From the previous results, as T → ∞,(
β̃′S11,T β̃

)−1 p→
(
b′
(
1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
ι+Υ

)
b

)−1

=
1

σ2
y

and

S11,T β̃
p→
[
1

2
δ2
(
1 +

sin (2λπ)

2λπ

)
ι+Υ

]
β = −σ2

yα.

So β̃ converges in distribution at a rate
√
T instead of T. Deriving the expression of the limiting

distribution for constant or time-varying δt is a very complicated exercise and, for that reason,

we rest on the results we find in the Monte Carlo section.
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