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Abstract

This paper considers forecasts of the growth and inflation distributions of the United King-
dom with factor-augmented quantile autoregressions under a model averaging framework. We
investigate model combinations across models using weights that minimise the Akaike Infor-
mation Criterion (AIC), the Bayesian Information Criterion (BIC), the Quantile Regression
Information Criterion (QRIC) as well as the leave-one-out cross validation criterion. The un-
observed factors are estimated by principal components of a large panel with N predictors over
T periods under a recursive estimation scheme. We apply the aforementioned methods to the
UK GDP growth and CPI inflation rate. We find that, on average, for GDP growth, in terms
of coverage and final prediction error, the equal weights or the weights obtained by the AIC
and BIC perform equally well but are outperformed by the QRIC and the Jackknife approach
on the majority of the quantiles of interest. In contrast, the naive QAR(1) model of inflation

outperforms all model averaging methodologies.
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1 Introduction

Model averaging is an alternative to model selection which has seen an increase in popularity over
the recent years. In a model selection approach, the researcher attempts to find a single best model
for a given purpose, while ignoring all the information in other models. Under the model averaging
approach, however, the researcher combines information from all competing models by obtaining a
weighted average of the competing models’ estimators. This can be seen as an insurance against se-
lecting a very poor model, as it allows the researcher to diversify and account for model uncertainty,
thus enabling an improvement in out-of-sample performance. This is because, as argued by inter
alia Hendry & Clements (2004); Wallis (2005), even a simple combination of forecasts with equal
weights can never produce a forecast that is worse than the worst individual forecast. Frequentist
model averaging (FMA), despite having a shorter history in economics than Bayesian Model Aver-
aging (BMA), has started to receive a lot of attention in the past decade or so, as, in contrast with
the BMA, it requires no priors and the corresponding estimators are totally determined by the data
(Moral-Benito, 2015) .

At the same time, the recent availability of large datasets has generated interest in models with
many possible predictors. Factor-augmented regressions, in particular, have been proven to forecast
a particular series relatively well compared to the original predictors, with the benefit of significant
dimension reduction (Stock & Watson, 2002). However, factors are usually determined and ordered
by their importance in driving the co-variability of many predictors, which may not necessarily be
consistent with their forecast power over a particular series of interest. Model specification is there-
fore necessary in order to determine which factors should be included in the forecast regression, in

addition to specifying the number of lags of all independent variables.

In this paper, we consider different model averaging methodologies for the combination of different
quantile autoregressive (QAR) models, in an attempt to best forecast the quantiles of inflation and
growth. Kapetanios & Labhard (2008) provide compelling reasons for using model averaging for
the purpose of forecasting, in order to address the problem of model uncertainty. Combinations
of forecasts often outperform individual forecasts, as models may be incomplete in different ways,
thus averaging can offset different biases present in each model (Granger, 1996; Granger & New-
bold, 1974). Nevertheless, this prior empirical work on forecast combinations of inflation focuses on
point estimates for the conditional mean of inflation (Kapetanios & Labhard, 2008) and such point
forecasts ignore the risks and uncertainty around the central forecast. In the case of growth, for
example, such forecasts may paint an overly optimistic picture of the state of the economy (Adrian
et al., 2019). Distribution or quantile forecasts, on the other hand, provide a more complete picture

of the conditional dependence structure of the variables examined and allow us to forecast higher



moments. Predicting several conditional quantiles that can characterise the entire distribution of
future growth and inflation can be integral in order to properly assess growth vulnerability and in-
flation stability (Adrian et al., 2019; Manzan & Zerom, 2013).

The intersection of latent factors with quantile regression models is fairly recent. Ando & Tsay
(2011) have considered a quantile regression model with factor-augmented predictors, whose effect
is allowed to vary across the different quantiles. More recently, Ando & Bai (2020) introduced a
new procedure for analysing the quantile co-movement of a large number of time series based on a
large scale panel data model with factor structures. In their study, the latent factors are allowed
to vary across the different quantiles of the variables from which they are extracted and, as such,
their model is a quantile factor model. Similarly, Chen et al. (2019) estimate scale-shifting factors
and quantile dependent loadings, thus factors may shift characteristics (moments or quantiles) of the
distribution of the set of directly observable measures, other than its mean, and factor loadings are
allowed to vary across the distributional characteristics of each variable. Phella (2020) contributed
to this relevant literature by using mean shifting factors as a method of dimension reduction and
use these latent factors as additional regressors in quantile autoregressive models. Results showed
that the distribution of CPI inflation is best modelled parametrically with a quantile autoregression
of order 1, while the distribution of GDP growth is best modelled as a factor-augmented quantile
autoregression and such latent factors impact certain quantiles differently. Therefore, our pool of
candidate models in the forecasting exercise in this paper will include multiple lag QARs, factor

augmented QARs or QARs augmented with targeted macroeconomic variables.

Nevertheless, in order for the model averaging approach to outperform the model selection, weights
assigned to each model need to be correctly chosen and how such weights are chosen can have a
significant impact on forecast performance. Buckland et al. (1997) and Burnham et al. (2002) con-
struct model averaging weights based on the values of the Akaike information criterion(AIC) and the
Bayesian Information Criterion (BIC). In a seminal article, Hansen (2007) proposed that weights in
least squares model averaging should be chosen over a discrete set by minimizing a Mallow’s crite-
rion, as such an estimator is asymptotically optimal in terms of optimising the mean squared error.
Meanwhile, Hansen & Racine (2012) propose a Jackknife model averaging (JMA) approach for least
squares regression where weights are selected by minimising a leave-one-out cross-validation criterion
function, which was extended for models with dependent data by Zhang et al. (2013). More recently,
Cheng & Hansen (2015) demonstrated that both the Mallows and leave-h-out cross-validationn crite-
ria remain valid in factor-augmented regression forecasts, as the factor estimation error is negligible,

without any restrictions on the relation between N and T.

Lu & Su (2015) extended the JMA of Hansen (2007) to the quantile regression framework and also



proposed a Mallows-type information criterion for QR model averaging, the Quantile Regression In-
formation Criterion (QRIC), which has a computational advantage over the Jackknife approach. We
therefore employ this multitude of weighting methodologies over the competing models. We utilise
the AIC and the BIC, which use exponential weighting and are often referred to as “smoothed”
averaging (Buckland et al., 1997), the Quantile Regression Information Criterion (QRIC) and the
Jackknife weighting method, as those are outlined in Lu & Su (2015). We also choose to include
in our forecast performance comparison the quantile autoregressive model of order 1, QAR(1), as a
naive benchmark model similar to the one proposed in Pasaogullari & Meyer (2010) and Pasaogullari

& Meyer (2010), as well as a full model which includes all the possible predictors under consideration.

We employ these methodologies to determine which model averaging weighting choice is the best for
forecast performance, in terms of coverage and final prediction error when predicting one-quarter-
ahead GDP growth and CPI inflation for the United Kingdom.! We specifically employ these method-
ologies within our estimation sample only, in order to assign fixed weights to the competing models
and then use these corresponding weights to obtain the averaged model and produce forecasts, which
are in turn evaluated by the aforementioned performance measures. Our results demonstrate that,
on average, the equal weights or the weights obtained by the AIC and BIC perform equally well, but
are somehow outperformed by the QRIC and the Jackknife approach on the majority of the quantiles
of interest of GDP growth, both in terms of coverage and final prediction error. Furthermore, the
QRIC and Jackknife model averages ourperform the full model where all available information has
been used. On the other hand, the Quantile Autoregression of order 1 of CPI inflation, a model that
is often chosen as the best predictor in forecasts of the average value, outperforms all model averaged

methodologies.

The remainder of the paper is organised as follows. In Section 2, we outline the framework, present
the range of models we consider and describe the model averaging methodologies. Section 3 examines
the forecast evaluations with respect to the two forecast performance measures. Concluding remarks
are given in Section 4 and information regarding mnemonics and the competing models are referred

to an appendix.

! Along with the coverage rates, we also consider an interval score in order to obtain information regarding the
magnitude of violations when they take place.



2 The Framework

2.1 Quantile Autoregression Model Averaging

We begin by outlining the factor model used in the sequel. Let

X =MF +ep (1)

where X, is an N x 1 vector of observable variables characterising the economy, A; is an N X k matrix
of factor loadings, F; is a k x 1 vector of the k latent common factors and e; is an N x 1 vector of
idiosyncratic disturbances. The errors are allowed to be both serially and (weakly) cross sectionally

correlated.

As in Stock & Watson (2002), factors are extracted via the principle components approach and the

estimated factors and estimated factor loadings are defined as:

N T
. 1 )
(F,A) = arg I}Jﬂ/{lﬁ E E (Xie — AiFy)".

i=1 t=1

The resulting principal components estimator of F' is then F= XT/A, where A is set equal to the eigen-
vectors of X’ X corresponding to its k largest eigenvalues. In the remainder of this paper, the number
of factors k would remain fixed and can be estimated using the information criteria outlined in Bai &

Ng (2002), who take into account the sample size both in the cross-section and time-series dimensions.

Ideally, we would like to include all the macroeconomic variables in X; as additional regressors in
the quantile autoregressive model, however, due to the curse of dimensionality, we wish to reduce the
dimension of X; with the use of factors as a way of summarising all the available information. Let
therefore {y;, V;, F;}1_, be a random sample, where y; is a scalar dependent variable (in this work the
CPI inflation rate or the GDP growth rate), V; = {(Vi4, Vay, ...)} is a set of targeted macroeconomic
variables of countably finite dimension and F; = {(Fi ¢, Foy,...)} is a set of latent factors of countably

finite dimension that need to be estimated a priori from a large panel dataset.?

Without loss of generality, in the remainder of the section we assume that Y;;, = 1. Under the
assumption that the conditional distribution of y,,1 given Z;, where Z; = (Y;,V,, F}), is continuous,

we can then define the 7" conditional quantile of v, given Z, as the measurable function ¢, satisfying

2The vector F} is unobservable, therefore, in practice, we replace the infeasible vector F;_; with the feasible vector
ﬁt’, where F} = (ﬁ‘u, e Fkt) € R* k € N, is the vector of estimated factors from the panel data X+ However, given
that we are not interested in coefficient inference, it is sufficient that factor estimation error has already been proven
to be negligible.



the conditional restriction

P(y1 < ¢ (Zy) | Z;) = 7, almost surely. (2)

We consider a sequence of approximating models m = 1,2, ..., M, where the m!* model uses r,, regres-
sors belonging to Z, and M may go to infinity with the sample size. We write the m approximating

model as the Quantile Autoregression (QQAR) of order p,

Y1 = 9Em)Zt(m) + €41 = Z ej(m)th(m) + €41, (3)

J=1

where g(m) = (Ql(m), ...,Qrm(m))/, Zt(m) = (Zﬂ(m), ceey Ztrm(m))/, th(m) for j = 1, vy T, are variables in
Z, that appear as regressors in the m‘* model and 0(m) are the corresponding coefficients. The rth
Quantile Autoregression Estimator (QARE) of 6,,), proposed by Koenker & Xiao (2006), is defined

as

Oy (1) = arg rgr(ur)l Qr(m) (O(m)) (4)

arg min, Z pr (Wit — Oy Zim) )+ (5)

where p.(e) = e(7 — 1(e < 0)) is the “tick” loss function. Let é1(m)(7) = Y1 — G(m)( T) Zym) be
the quantile residual and let w(7) = (wy(7), ..., wn, (7)) be the weight vector in the unit simplex of
RM and W = {w € [0,1]™ : =M w,,(7) = 1}. Therefore, for t = 1,...,T, the model averaging

estimator for the 7! quantile is given by

Ques(r) (W) = Y Wi (7) Z 3y B (7)- (6)

It is evident in equation (6) that the weight vector w,,(7) differs across different quantiles. This
implies that a heavier importance could be placed on different competing models depending on the
quantile under consideration. For notational simplicity however, we drop this dependence hereinafter.
Furthermore, the weight vector is independent of time. Kascha & Ravazzolo (2010) have previously
found that time-varying weights for combining inflation density forecasts provide no advantage over
fixed weights. Furthermore, in context, the computational cost of recursive weights with an extensive

pool of candidate quantile models can become particularly high. As a result, unless there is strong



evidence of a structural change that would imply different suitable models at each period, there is

no significant gain in employing time-varying weights.

2.1.1 Akaike and Bayesian Information Criteria Weights

Both the AIC and BIC are often referred to as “smoothed” averaging (Buckland et al., 1997), which
ezp(flnzfm)
St exp(—Inf;)’

m*™ model. The aforementioned criteria assess each model fit, while at the same time penalizing for

use exponential weights of the form where Inf,, is an information criterion for the
the number of estimated parameters, albeit the BIC penalises model complexity more heavily. Both
the AIC and BIC criteria are easy to compute regardless of the number of competing models M we
are considering and they have been proved to outperform the simplest model combination, i.e. equal
weights. In the quantile regression context, following Machado (1993), for the m!* model, the AIC
and BIC are respectively defined as,

T

1 A~

AIC,, = 2ln[? tz; Pr(Yre1 — Oy (T)IZE(m)] + 21, and
1 « -

BIC,, = 2[”[? ; Pr(Ypy1 — sz) (T)Zt(m)] + rpdn(T),

where 7, is the dimension of the independent vector Zy,).

Thr AIC and BIC weights for model m are thus respectively defined as,

care . exp( —45) d @PIC cap(=F5=) 7
mo T M —Arc;, and We o =3y —BIC; " (7)
Zj:l exp(—5—*) Zj:l exp(—5—)

2.1.2 Quantile Regression Information Criterion Weights

The QRIC is a Mallows-type information criterion for QR model averaging, whose criterion function
has been outlined in Lu & Su (2015). Mallows’ type criteria tend to compare the predictive ability of
subset models to that of a full model, but they still balance the trade off between obtaining a “good”
model that contains as few variables as possible. Letting therefore € () (T) = Y1 — 1, t’(m)é(m)(T)
and &4 (w) = M Wi €r1(m) (T), the QRIC can be defined as,

T =T N
QRICr(w) =T * Qr(W) + f<F_1(T))mZ_1 T (8)



where Qr(w) = %Z?:o pr(é+1(w)) indicates the average in-sample QR prediction error. F' and f
denote the CDF and PDF, respectively, of €;,1(7) and Z%:l Wy T Signifies the number of effective
parameters in the combined estimator. Therefore, in order to choose the weight vector w, by the
QRIC, we must estimate the sparsity function of €,1(7), s(7) = f(T él (T) Following Koenker (2005)
this can be estimated by,

Flr+h—T)— Ex\(r—h—T)
Z*hT

§(T> = ) (9>

where FE ! is an estimate of the quantile function F~' of €;,1(7) based on the quantile residuals
obtained from the largest approximating model, hy = T 5{4.5¢*(® (7)) /[207(7)% + 1]2}5 and ¢
and ® are the standard normal PDF and CDF, respectively. The resulting empirical QRIC weighting

vector is then defined as,?

WRRIC — (leRIC” - w]%RIC) = arg min QRIOT(M)

argmin [Qr(w) 4+ 7(1 —17) Z W T - (10)

weWw

It is worth noting that due to the presence of the sparsity function, the QRIC may not perform as
well on extreme quantiles where the sparsity is low. However, the same holds true for the quantile
regression estimator, which is why our analysis excludes the most extreme tails of the distribution

and only focuses on values where 7 € [0.1,0.9].

2.1.3 Jackknife Weights

The Jackknife selection of the weighting vector w is the most distinct, as rather than imposing
the weighting on the fitted value of the dependent variable it, in practice, weighs the estimated
quantile regression coefficients and uses the average coefficient estimator in the forecasting exercise.
The Jackknife weight vector is optimal in terms of minimising the final prediction error (FPE),
one of our forecast performance measures, in the sense of Akaike (1970). For all the competing
models under consideration m = 1,..., M, let ét(m) denote the jackknife estimator of é(m) in model
m with the #'" observation excluded from the estimation. The jackknife choice of the weight vector

A~ ; ~Jkni ~Jkna . . . .. .
wlknife = (@Fire @ lF€) is obtained by choosing w € W to minimise the leave-one-out cross-

3There is no closed form solution for equation (10) but the optimal weight vector can be found by linear programming
as in typical quantile regressions.



validationn criterion function,

T

M
1 . oA
CVr(w) = T Zp‘r(yt+1 - Z met(m)et(m))' (11)
m=1

t=0

The resulting Jackknife weighting vector is therefore defined as,

~ 1 ~Jkni
kamfe — (wi] nife

g eeey

@i"1%) = arg min OVi(w). (12)

Is worth noting that, though the leave-one-out cross validaion criterion function is convex in w and

can be minimised by running the quantile regression of v,y on Zj, ,0:y), it cannot guarantee that

t(m)
the resulting solution lies in WW. However, one can express the constrained minimisation problem in

(11) as a linear programming problem (see e.g. Lu & Su (2015), p. 43).

2.2 Forecasting Performance Measures

The quantile autoregression framework allows us to obtain forecasts for the conditional quantiles of
the dependent variable, however, once we obtain the realisation for the dependent variable, it only
provides us with the actual value of the dependent variable, but not its quantile at that period. For
example, in our empirical context, we can forecast the 7% quantile of the inflation rate H-periods
ahead, however, fast forward H periods later what we obtain is the value of the inflation rate, y;, g,
and not the value of the 7" quantile, Q,, (7). This implies that evaluating the forecast performance
of the aforementioned weighting methodologies is not a trivial issue, but it also allows for a certain
degree of flexibility. We therefore evaluate the suggested methodologies using two different forecast

performance measures.

2.2.1 Unconditional Coverage

Though we may not be able to obtain an observation for the realisation of the 7" quantile, in
practice quantile forecasts correspond to one-sided interval forecasts of the dependent variable of
interest. Therefore, the unconditional coverage testing framework of Christoffersen (1998) poses a

" of the quantile forecast. Correct coverage tests in

suitable measure for evaluating the “accuracy’
practice aim at testing whether a sequence of conditional quantile forecasts satisfies certain optimal-
ity conditions. Here, we are not interested in testing in absolute terms if the quantile forecasts are

correct, but which method for choosing the weight vector might be better, thus we are interested



into which method provides as with the most correct coverage rate.

Assume we obtain a sequence of out-of-sample forecasts,{G+n(7)}{_y, of the conditional quantile
Qy,, (7) of the time series y,,p. This quantile forecast is an upper limit for an interval forecast
for the time series y, for time ¢ + H, made at time t, for the coverage probability 7.* However, as
we move across the quantiles and towards the upper tail of the distribution, it is more likely that
most of the observations will fall below the estimated quantile, which can result in better coverage
results by construction, rather than due to better forecast performance. Therefore, for each quantile
under evaluation, we choose to obtain a two-sided interval forecast, {(L7, ;;,(p), U], H|t(p))}f;0, where
L7, y+(p) and Uf, y,(p) are the lower and upper limits of the ex-ante interval forecast for quantile
7, for time t + H, made at time t, for the nominal coverage probability, p. We can then define an

indicator variable, Z7, ,; for time ¢ + H, where

o, - { Lo il e € L (2) U () "
V0 i e € LT, (8) UT g (0)

We can therefore measure the efficiency of this forecast interval by measuring the amount of times
that the indicator variable takes a value of 1 as a proportion of the total number of prediction periods.

For example, in the one step ahead forecast, the coverage rate is defined as

P
1
Coverage rate(w) = 2 E AIRE (14)
s=0

where P s the number of periods from the sample set aside for forecast evaluation. The quantile
forecast is dependent on the weight vector chosen by each method, though this dependence has
been dropped for simplicity, therefore, the closer the empirical coverage rate to the nominal coverage
probability, p, the more “accurate” the method in terms of approximating the true quantile of the

distribution.

Although the unconditional coverage measure is a suitable evaluation method for quantile forecasts,
it can only provides us with an indication of whether the realised observation falls within the forecast
interval or not. In case the realised observation falls outside the interval forecast, implying we have
a violation, we have no information on how far away it is. It is true that in the spirit of quantile

regression the only relevant issue is only whether or not the observation falls below an estimated

4If the 7" quantile forecast, g, m|¢(T) is accurate, then in practice the number of times that the realisation of y; i
falls below the forecast value should on average equal the nominal quantile level for which we are forecasting.

10



quantile and no attention is given on how far an observation is from the quantile. Nevertheless, in
this empirical context where the prediction period is rather small and thus empirical coverage rates
might not provide a clear image on which methodology performs better, we also wish to examine
the behaviour of observations that fall outside the interval forecast. We therefore complement the
unconditional coverage measure with the interval score of Gneiting & Raftery (2007). This scoring
rule has an intuitive appeal in that the forecaster incurs a penalty, the size of which depends on
the relevant confidence level, if the observation misses the interval, but is also rewarded for narrow
prediction intervals. In our empirical context, the interval score can be defined for a nominal coverage

probability p as,

2 2
SYL,Usyryn) = (U — L) + E(L = Yean) L(yern < L) + Tp(ywh = U)lyewn > U),  (15)

where the dependencies of the lower and upper bound, L and U, on 7, t, t + h and p has been
dropped for simplicity. It is evident that this scoring rule imposes the same penalty for violations
that occur below the lower bound and above the upper bound. It is worth mentioning that one
could examine an asymmetric form of penalisation that would take into consideration the spectrum
of the distribution available below the lower bound or above the upper bound, which is dependent
on the quantile of interest considered, since this could impact the possible magnitude of a violation.
However, in this context, this is not expected to influence the results in a significant way and has

not been considered.

We therefore obtain the one-step-ahead average interval score as,

P
1
Interval Score(w) = = >~ 87(LL11.(0), ULy (B): 9o11), (16)

s=0

where P s the number of forecast evaluation periods and the dependence of the Interval Score on
the weight vector w is due to the dependence of lower and upper bounds of our confidence intervals
on w, which has been dropped for simplicity. In this case a lower interval score is desirable, since it
implies that even if the realised observation falls outside the forecast interval, the magnitude of the

violation is not large.

2.2.2 Final Prediction Error

Different loss functions £ arguably correspond to different optimal forecasts. For example, letting

€rr = Yirm — Gipmp be the forecast error, if a quadratic loss function is used such that L(é4p4) =

11



€., then the optimal forecast for y,.py would be conditional mean. Similarly, if the absolute
value loss function is used such that L£(é.1p) = |é4m|, then the optimal forecast for y,ymx would
correspond to the conditional median. Based on this idea, Giacomini & Komunjer (2005) argue that,
in the case conditional quantiles, the corresponding loss function would be the asymmetric linear loss
function, L(é+n) = pr(éom) = ém(7 — L(ém < 0)) and therefore the optimal forecast for vy, g
is its conditional 7" quantile. Therefore, in the model averaging framework, an alternative forecast
performance measure for the one-step-ahead forecast is the Final Prediction Error (FPE), which, as

a function of the weight vector, is defined as,

Ms

P
FPEp(w Z pr(Ysir — () Zsom)], (17)
s=0

m=1

where w,, is chosen by one of the suggested methodologies. In this case, the parameter 7 describes
the degree of asymmetry in the loss function, where a value less than one-half indicates that over-
predicting results to a greater loss for the forecaster than under-predicting by the same magnitude.’
Therefore, the smaller the FPE, the better the weight vector method in terms of the out-of-sample

quantile prediction error.

3 Forecasting the Distribution of GDP Growth and CPI In-

flation

Inflation is one of the most important variables due to its dominant role in many macroeconomic
models (Levin & Piger, 2002; Angeloni et al., 2006). Quarterly “Inflation Reports” have become the
new norm for the majority of central banks and even though the costs and benefits of transparency
are still widely debated, it is broadly agreed that a central bank should be concerned with inflation
forecasting. Nevertheless, as argued by, inter alia, Faust & Wright (2013); Henry & Shields (2004), a
point forecast of inflation without some measure of associated uncertainty is arguably of little value.
Policymakers forecasting inflation need to not only consider the most likely outcome for inflation,
but all possible paths that inflation can take, which involves examining the dynamics and higher mo-
ments of inflation. Similarly, over the recent years policy-makers have shifted focus towards downside
risk for GDP growth rather than point forecasts for the conditional mean of growth. This is due
to the fact that such point forecasts ignore the risks surrounding these central forecasts and thus

may paint an overly optimistic picture of the state of the economy (Adrian et al., 2019). A density

5When the parameter 7 equals one-half, over-predicting and under-predicting generates the same loss, thus we
converge to the absolute value loss function where the optimal forecast is the conditional median.

12



forecast therefore gives a more complete characterisation of future growth and inflation prospects
and forecasting future conditional quantiles is a computationally easy method to obtain it, while

allowing different quantiles to exhibit different sensitivity to predictors.

3.1 Data

In this empirical study we examine, under a model averaging approach, which methodology for
choosing the appropriate weight vector is better suited for forecasting the one-quarter-ahead annual
GDP growth rate and CPI inflation rate. Several of our competing models will involve latent factors
as a way to summarise a large amount of information from different macroeconomic variables. We
therefore consider for the estimation of factors series containing data on inflation, real activity and
indicators of money and key asset prices for the United Kingdom. We will undertake the analysis
using a sample which includes quarterly data from 174 macroeconomic variables spanning from the
second quarter of 1991 to the second quarter of 2018, with a total of 7' = 109 observations.® All
the data has been stationarised prior to use. Given that latent factors have been proven impor-
tant in modelling and predicting our variables of interest we will extract two latent factors from the
macroeconomic dataset. The latent factors are extracted using a recursive estimation scheme, thus
in each period within the prediction sample all available past information is utilised, but the results
hold under alternative estimation schemes as well. Furthermore, given the close relationship between
growth and inflation, we shall include these variables as individual regressors. Therefore, there would

overall be 5 possible regressors for each dependent variable, as shown in Tables 1 & 2.

Regressor Name Correlation with GDP growth
r1 First lag of GDP Growth 0.9048
T Second lag of GDP Growth 0.7020
T3 Lagged CPI Inflation -0.4453
T4 Lagged first latent factor 0.2354
5 Lagged second latent factor 0.2584

Table 1: Regressors for the one-quarter-ahead GDP growth rate

6This dataset is a subset of the dataset used by Ellis et al. (2014) to create a time-varying factor augmented VAR,
model for the UK monetary transmission mechanism and details regarding the variable used can be found in the
Appendix.
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Regressor Name Correlation with CPI inflation

r1 First lag of CPI inflation 0.9179
9 Second lag of CPI inflation 0.8034
T3 Lagged GDP Growth -0.3667
T4 Lagged first latent factor 0.1274
s Lagged second latent factor -0.0793

Table 2: Regressors for the one-quarter-ahead CPI inflation rate

3.2 Competing Models

For each dependent variable of interest we have constructed 57 non-nested candidate models with all
the possible combinations between the five regressors and an intercept, where the smallest models
has at least two regressors. Our smallest and largest model can therefore be characterised by the
following regressors, {1,r;} and {1, 71,79, 73, 74,75}, respectively. We split the sample into an estima-
tion sample of size T} = %, used to determine the appropriate weight vector for model averaging and
an evaluation sample of size T, = T — T3, used for forecast performance evaluation. We then choose
the relevant weight vector for the 57 competing models under the four methodologies presented and
then using the averaged model construct one-period-ahead forecasts for 9 different quantiles where
7 € [0.1,0.9]. We also construct forecasts with the naive quantile autoregressive model of order 1,
a full model which includes all the aforementioned regressors, as well as an average model which

assigns an equal weight to all 57 competing models.

3.3 Out-of-Sample Performance

As it was outlined in the framework section, the 57 competing models get assigned a corresponding
weight for model averaging by each of the four methodologies, which are then used to obtain a fore-
cast average of the one-step-ahead GDP growth and CPI inflation rate. Tables 4 -11 in the Appendix
demonstrate the allocated weights by each methodology across the 57 competing models, for each
of the two dependent variables. It is evident that the AIC and BIC allocate similar weights, which
are roughly equal across all the models under consideration, so their out-of-sample performance is
expected to be similar. On the other hand, the QRIC allocates significantly high weights to specific
models, assigning a zero weight to the majority of the competing models. It is also evident that
this criterion favours low-dimensional models, in contrast with the Jackknife method, which favours
higher dimension models. Furthermore, Tables 12 -15 in the Appendix show the empirical coverage
rates and final prediction error for all the methodologies under consideration. From those results,

as expected given the allocated weights, the out-of-sample performance of a simple average model of
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equal weights is comparable to the performance of an average model where weights are assigned using
the AIC or BIC, for both growth and inflation. For brevity purposes therefore, in the remainder of
the paper we shall be comparing the forecasting performance of the naive model, the full model and
the average models with an equal weighting and with weighting assigned by the QRIC and Jackknife

criterion.

Figure 1 shows the empirical coverage rate by each of the remaining competing methods. The top
panel has GDP growth as the dependent variable and the bottom panel is for CPI inflation. We
evaluate 9 equidistributed points for 7 € [0.1,0.9], where for each quantile of interest we obtain
an interval forecast with a nominal coverage probability of 10%.” The shaded region demonstrates
the confidence interval for the null hypothesis that the empirical coverage rate is equal to nominal

coverage probability of 10%.%

Focusing on GDP, in terms of coverage, although it is not clear whether a single methodology outper-
forms all its competitors, several conclusions can be made. First, we can see that all the methodologies
tend to provide more conservative interval forecasts at the lower tails of the distribution, but such
intervals become more liberal as we move towards the upper tail. Furthermore, on several occasions
we see that the null hypothesis of nominal coverage of 10% is not satisfied at certain points of the
distribution by several methodologies, indicating that perhaps additional regressors should be con-
sidered. Nevertheless, overall, the QRIC weighting methodology seems to have a rather competitive
performance, with empirical coverage rates close to the nominal probability for a substantial range
of the distribution. More interestingly, the fact that the full model does not outperform several of
the model averaging methodologies proves that there are gains to be made by considering an array of
competing models, even if such models do not utilise the full information. This might be, as argued
by Granger (1996), due to presence of different estimation biases in the competing models that may

cancel each other out and, as a result, provide us with a more accurate forecast than the full model.

"For example, if the quantile of interest is the conditional median, we obtain an interval forecast by estimating the
45" and 55" conditional quantile

8With larger nominal coverage probabilities (e.g. 20%), the absolute performance of the methodologies, in particular
with respect to coverage, improves due to the larger forecast intervals, but the comparative performance between
methodologies remains identical.
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Figure 1: Out-of-Sample Coverage Rates across quantiles with 10% confidence bands

GDP Growth
0.03 |
—QAR(1)
—— Full Model
1 Equal a
0025 _qnic
— Jackknife
0.02 — =
0.015 —
0.01"
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Quantile
CPI Inflation
0.022
—QAR(1)
0.02 - —— Full Model -
Equal
0.018 - —QRIC H
— Jackknife
0.016 - —
0.014 - -
0.012 1
——
0.017
0.008 '
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Quantile

Figure 2: Out-of-Sample Forecast Error Loss across quantiles

With respect to CPI inflation, there exists a much clearer picture. Firstly, all the methodologies

provide liberal forecast intervals for the majority of the distribution, with the exception of the most
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extreme tails. A simple average is often outperformed by the QRIC and Jackknife methodologies,
but overall it is evident that the naive QAR(1) model seems to be outperforming all the competitors,
by achieving coverage rates that are the closest to 10% for the majority of the quantiles of interest.
However, taking into consideration the interval score can provide more clarity to our conclusions.’
As it is evident in Figure 2, the interval score for the QRIC and Jackknife approaches is signifi-
cantly lower when compared to the other methodologies, particularly in the case of GDP growth.
This result indicates that even though the QRIC and Jackknife approaches may have a significant
number of violations (i.e. the realised observation falls outside the interval forecast) and thus not
as accurate coverage rates, the magnitude of the violation is not large and/or the prediction inter-
vals provided by these methodologies are narrower. This implies that for several of the prediction
periods, the realised observation is not far from the lower or upper bound of the forecast interval.
In contrast, the simple average model may have a similar number of violations, but when a vio-
lation takes place the forecast error is significantly larger. Furthermore, similarly to what we have

identified before, the full model seems to be outperformed by certain model averaging methodologies.

When forecasting CPI inflation, a similar picture is painted as the one for GDP growth, in that a
simple average is associated with larger mean forecast errors across the whole distribution. Similar
with its coverage performance, the QAR(1) seems to be outperforming all the methodologies under
consideration, implying that the naive model might be the best for predicting the quantiles of CPI
inflation. Another take away from this measure of CPI inflation is the fact that the interval score
and thus the forecast error across all the methodologies seems to be smaller in the upper tail of the
distribution. This could be explained by a higher variation in the right tail of the CPI inflation
distribution, as this has been found in Phella (2020), which enables for better forecasting regardless
of the allocation of weights across the different competing models. Conversely, downturns are more
difficult to predict, probably due to the zero lower bound that is present, thus lower quantiles are

associated with larger violations.

Looking in conjunction at the two figures, we can conclude that, in the case of GDP growth, the
QRIC and, to a certain extent, the Jackknife model averages can produce reliable forecasts for a
large spectrum of the distribution, though such forecasts tend to be rather liberal. Notably however,
for CPI inflation, the QAR(1) seems to be performing the best with coverage rates close to 10%
across most of the evaluated quantiles and with violation magnitudes lower than the ones produced
by the QRIC and Jackknife. This is in line with the notion present in the relevant literature that past
inflation is the best predictor for future inflation. On the other hand, the fact that the QRIC and

9Tt is worth noting once again that one could consider an asymmetric penalty, in order to penalise violations
according to which quantile of the distribution once is interested and the maximum possible violation that can incur
at that point.
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Jackknife model averages for GDP growth outperform the full model, demonstrates the importance
of considering the aggregation of multiple competing models. Furthermore, the fact that for GDP
growth the methodologies that forecast better are the ones which attribute significant weights to
models with latent factors (see Table 6 in Appendix), is an indication that such latent factors are
relevant for out-of-sample estimation of conditional quantiles of growth. This is a complementary
result to that present in the in-sample estimation literature, where latent factors, summarising a
larger information set, were found to carry relevant information for in sample estimation of GDP

growth, but not CPI inflation.

. <108 GDP Growth

—QAR(1)
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Equal
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— Jackknife ||

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Quantile
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Quantile

Figure 3: Out-of-Sample Final Prediction Error across quantiles

The evidence when considering the final prediction error are much clearer than that for coverage. It
is clear in both panels of Figure 3 that the final prediction error of the QRIC and Jackknife method-
ologies seem to be the best for most of the quantiles considered, albeit the full model is competitive in
the extreme right tail. This implies that a model average with distinctive weighting serves as a better
predictor for 3;,1. The good performance of the QRIC methodology is not surprising in this case, as
the quantile regression criterion was constructed in order to minimise this type of prediction error.
Once again, we see that the naive QAR(1) model of CPI inflation outperforms all the competing
methodologies, implying that conditional quantiles estimated solely with past inflation information
can act as the best predictor for the future value of inflation. This is a striking difference with
mean regressions of the UK CPI inflation, where forecast performance relative to the AR benchmark

model is improved when forecasts are combined (Kapetanios & Labhard, 2008), though this work
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utilises information from multiple data sources and data types in the forecast combination, including

subjective data.

The distinctive differences and similarities between the two performance measures in all three figures
highlights certain empirical facts. Firstly, it is evident that despite the computational ease, assigning
weights according to the Akaike and Bayesian Information Criteria does not improve forecasting per-
formance over a model averaging approach where each competing model is assigned an equal weight.
Most importantly, the distinctive performance of the different model averaging methodologies demon-
strates the importance of choosing the assigned weights correctly. Secondly, the differences between
the forecasting performance of the naive QAR(1) models in the case of GDP growth versus CPI
inflation, demonstrates fundamental differences regarding which variables are the best predictors in

each individual case, despite the close relationship between inflation and growth.

Similarly with the results of in-sample estimation found in Phella (2020), past inflation is the best
predictor for the future path of inflation, while GDP growth can be predicted best if additional latent
factors and models which include such factors are taken into consideration. The former has been long
discussed in the case of mean regressions of inflation, however these results prove that this remains
true in the case of conditional quantiles as a way to obtain a trace of the inflation distribution and
therefore a measure of the risk and uncertainty surrounding future inflation. Lastly, the good perfor-
mance in forecasting GDP growth of the QRIC and Jackknife approach, which assign higher weights
in models with latent factors, is also in line with the in-sample literature, where these latent factors
had been shown to have a distinctive impact across different parts of the growth distribution. These
results once again highlight the necessity of high dimensional macroeconomic data when extracting
latent factors and at the same time demonstrates the importance of such latent factors in quantile

regression models for different variables of interest.

4 Conclusion

We have constructed forecasts of the conditional quantiles for the GDP growth rate and CPI Inflation
rate of the United Kingdom, using a model averaging approach where the weight vector has been
chosen by different criteria: the AIC, BIC, QRIC and Jackknife. The literature has long supported
that forecast combinations of average inflation can improve out-of-sample performance, however this
literature ignores the risks and uncertainties around central forecasts. Similarly for growth, although
Bayesian model averages have long been used, frequentist model averaging has not gained significant

attention. This work addresses both issues, by dealing with the conditional quantiles of growth and
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inflation and thus their whole distributions.

We find that, in terms of coverage the distinctive weighting across competing models imposed by the
QRIC and Jackknife can outperform an equal weighting, as well as the full model, for forecasting
GDP growth, when an interval score is simultaneously considered. On the other hand, the benchmark
QAR(1) model of CPI inflation outperforms all model averaging methodologies. In terms of final
prediction error, a similar picture exists. Overall, the results demonstrate the importance of high
dimensional macroeconomic data and the inclusion of latent factors, as a way to summarise such
data, when forecasting GDP growth but confirm that past inflation is the bet predictor for future
inflation. Previously, latent factors were shown to be relevant for in-sample estimations of the
growth distribution. Although good in-sample performance does not guarantee good out-of-sample
performance, this work demonstrates that in the case of growth, latent factors are also relevant and

important in out-of-sample forecasts of the conditional quantiles.
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5 Appendix

5.1 Weight Allocation

Table 3: Included Regressors in Competing Models

Competing Model ID Included Regressors

1 1 2 NaN NaN NaN NaN
2 1 3 NaN NaN NaN NaN
3 1 4 NaN NaN NaN NaN
4 1 5 NaN NaN NaN NaN
5 1 6 NaN NaN NaN NaN
6 2 3 NaN NaN NaN NaN
7 2 4 NaN NaN NaN NaN
8 2 5 NaN NaN NaN NaN
9 2 6 NaN NaN NaN NaN
10 3 4 NaN NaN NaN NaN
11 3 5 NaN NaN NaN NaN
12 3 6 NaN NaN NaN NaN
13 4 5 NaN NaN NaN NaN
14 4 [§] NaN NaN NaN NaN
15 5 6 NaN NaN NaN NaN
16 1 2 3 NaN NaN NaN
17 1 2 4 NaN NaN NaN
18 1 2 5 NaN NaN NaN
19 1 2 6 NaN NaN NaN
20 1 3 4 NaN NaN NaN
21 1 3 5 NaN NaN NaN
22 1 3 6 NaN NaN NaN
23 1 4 5 NaN NaN NaN
24 1 4 6 NaN NaN NaN
25 1 5 6 NaN NaN NaN
26 2 3 4 NaN NaN NaN
27 2 3 5 NaN NaN NaN
28 2 3 6 NaN NaN NaN
29 2 4 5 NaN NaN NaN
30 2 4 6 NaN NaN NaN
31 2 5 6 NaN NaN NaN
32 3 4 5 NaN NaN NaN
33 3 4 6 NaN NaN NaN
34 3 5 6 NaN NaN NaN
35 4 5 6 NaN NaN NaN
36 1 2 3 4 NaN NaN
37 1 2 3 5 NaN NaN
38 1 2 3 6 NaN NaN
39 1 2 4 5 NaN NaN
40 1 2 4 6 NaN NaN
41 1 2 5 6 NaN NaN
42 1 3 4 5 NaN NaN
43 1 3 4 6 NaN NaN
44 1 3 5 6 NaN NaN
45 1 4 5 6 NaN NaN
46 2 3 4 5 NaN NaN
47 2 3 4 6 NaN NaN
48 2 3 5 6 NaN NaN
49 2 4 5 6 NaN NaN
50 3 4 5 6 NaN NaN
51 1 2 3 4 5 NaN
52 1 2 3 4 6 NaN
53 1 2 3 5 6 NaN
54 1 2 4 5 6 NaN
55 1 3 4 5 6 NaN
56 2 3 4 5 6 NaN
57 1 2 3 4 5 6
1 = Intercept,2 = r1,3 = 79,4 = 13,5 =

rq4 and 6 = 5.
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Table 4: Weight allocation by AIC for quantiles of interest for GDP Growth

Quantiles 0.1 0.2 0.3 0.4 0.
Model ID

0.6 0.7 0.8 0.9

ot

1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

2 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
3 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.018
4 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018
5 0.017 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018
6 0.02 0.02 0.02 0.02 0.02 0.02 0.019 0.019 0.018
7 0.019 0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.02

8 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
9 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018

10 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
11 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.017 0.017
12 0.018 0.018 0.018 0.018 0.017 0.017 0.017 0.017 0.016
13 0.016 0.016 0.015 0.015 0.015 0.015 0.015 0.015 0.015
14 0.016 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015
15 0.016 0.015 0.014 0.014 0.013 0.012 0.012 0.011 0.01

16 0.019 0.019 0.019 0.019 0.019 0.019 0.02 0.02 0.02

17 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
18 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.02

19 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
20 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
21 0.018 0.018 0.018 0.017 0.018 0.018 0.018 0.018 0.018
22 0.017 0.018 0.018 0.017 0.017 0.018 0.018 0.018 0.018
23 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
24 0.018 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
25 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017
26 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
27 0.018 0.019 0.019 0.019 0.019 0.018 0.018 0.018 0.018
28 0.018 0.019 0.019 0.019 0.019 0.018 0.018 0.018 0.017
29 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019
30 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019
31 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
32 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
33 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
34 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016
35 0.015 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
36 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019
37 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
38 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
39 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
40 0.018 0.018 0.017 0.018 0.018 0.018 0.018 0.018 0.018
41 0.018 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018
42 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
43 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
44 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017
45 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.017
46 0.017 0.017 0.018 0.018 0.017 0.017 0.017 0.018 0.018
47 0.017 0.018 0.018 0.018 0.018 0.017 0.017 0.018 0.018
48 0.017 0.017 0.018 0.018 0.017 0.017 0.017 0.017 0.017
49 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
50 0.016 0.016 0.016 0.015 0.015 0.016 0.016 0.016 0.016
51 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018
52 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.017 0.018
53 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
54 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.018
55 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
56 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
57 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
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Table 5: Weight allocation by BIC for quantiles of interest GDP Growth

Quantiles 0.1 02 03 04 05 06 07 08 09
Model ID

1 0.021 0.022 0022 0022 0022 0022 0022 0022 0022
2 0.02 0020 0021 0021 0021 0021 0021 0021 0.02
3 0.02 002 002 002 0021 0021 002 002 0.02
4 0.018 0.019 0019 0019 0019 0.019 0019 0019 0.02
5 0.018 0.019 0019 0019 0.019 0.019 0.019 0.019 0.019
6 0.021 0021 0022 0022 0022 0022 0021 0021 0.02
7 0.021 0021 0021 0021 0021 0021 0021 0021 0.021
8 0.021 0021 0021 0021 0021 0021 0021 0021 0.02
9 002 0021 0021 0021 0021 0021 0021 002 0.019
10 0.019 0.019 0019 0019 0019 0.019 0019 0.019 0.019
11 0.019 0019 0019 0019 0019 0.019 0018 0.018 0.018
12 0.019 0.019 0019 0019 0.019 0.018 0018 0.018 0.017
13 0.017 0016 0.016 0016 0.016 0.016 0.016 0.016 0.016
14 0.016 0.016 0.015 0015 0.015 0.015 0.015 0.015 0.016
15 0.016 0.016 0.015 0014 0013 0013 0012 0011 0.01
16 0.02 002 002 002 002 002 0020 0021 0.02
17 002 002 002 002 002 002 002 002 002
18 0.019 0019 002 002 002 002 002 002 002
19 0.019 0019 0019 002 002 002 002 002 0.02
20 0.018 0.019 0018 0018 0019 0.019 0019 0019 0.018
21 0.018 0018 0.018 0018 0018 0.018 0018 0.018 0.018
22 0.018 0018 0018 0018 0018 0.018 0018 0.018 0.018
23 0.018 0018 0.018 0018 0.018 0.018 0018 0.018 0.018
24 0.018 0018 0018 0018 0018 0.018 0018 0.018 0.018
25 0.016 0.016 0.016 0.016 0.017 0.017 0017 0.017 0.017
26 0.019 0.019 0019 0019 0019 0.019 0019 0019 0.019
27 0.019 0.019 0.019 0019 0019 0.019 0019 0.018 0.018
28 0.018 0.019 0019 0019 0.019 0.019 0018 0018 0.017
29 0.018 0018 0018 0018 0018 0.018 0018 0.019 0.019
30 0.018 0018 0.018 0018 0018 0.018 0018 0.018 0.019
31 0.018 0018 0.018 0018 0018 0.018 0018 0.018 0.018
32 0.017 0.017 0.016 0016 0.016 0.016 0.016 0.016 0.017
33 0.016 0017 0.016 0016 0.016 0.016 0.016 0.016 0.017
34 0.016 0.016 0.016 0.016 0.016 0.016 0.015 0.015 0.015
35 0.014 0014 0013 0013 0013 0.013 0013 0013 0.013
36 0.018 0018 0.018 0018 0.018 0.018 0018 0.018 0.018
37 0.017 0018 0018 0018 0018 0.0I8 0018 0.018 0.018
38 0.017 0.017 0018 0018 0.018 0.018 0.018 0.018 0.018
39 0.017 0017 0017 0017 0017 0.017 0018 0018 0.018
40 0.017 0017 0.017 0017 0017 0.017 0017 0.018 0.018
A1 0.017 0017 0017 0017 0017 0.017 0017 0.017 0.018
42 0.016 0.016 0.016 0016 0.016 0.016 0.016 0.016 0.016
43 0.016 0.016 0.015 0015 0.015 0.016 0.016 0.016 0.016
14 0.015 0015 0.015 0015 0015 0.015 0015 0.015 0.016
45 0.016 0015 0.015 0015 0015 0.015 0015 0.015 0.016
46 0.016 0016 0.017 0016 0.016 0.016 0016 0.016 0.017
A7 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017
48 0.016 0016 0.016 0016 0.016 0.016 0016 0.016 0.016
49 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
50 0.015 0014 0014 002 0014 0014 0014 0014 0015
51 0.016 0.016 0016 0016 0.016 0.016 0.016 0.016 0.017
52 0.016 0.016 0.016 0016 0.016 0.016 0.016 0.016 0.016



Table 6: Weight allocation by QRIC for quantiles of interest GDP Growth
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Table 7: Weight allocation by Cross-Validation for quantiles of interest for GDP Growth
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Table 8: Weight allocation by AIC for quantiles of interest for CPI Inlfation

Quantiles 0.1 0.2 0.3 0.4 0.
Model ID

0.6 0.7 0.8 0.9

ot

1 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

2 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
3 0.018 0.018 0.018 0.018 0.017 0.017 0.017 0.017 0.017
4 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.017 0.016
5 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016
6 0.019 0.019 0.019 0.019 0.02 0.019 0.019 0.019 0.019
7 0.019 0.019 0.019 0.019 0.019 0.02 0.02 0.02 0.02

8 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
9 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019

10 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019
11 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
12 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
13 0.017 0.016 0.016 0.016 0.015 0.015 0.015 0.014 0.014
14 0.016 0.016 0.016 0.016 0.015 0.015 0.014 0.014 0.013
15 0.016 0.015 0.014 0.014 0.013 0.013 0.012 0.011 0.01

16 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
17 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
18 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
19 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
20 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
21 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019
22 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
23 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
24 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016
25 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.015
26 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.019 0.019
27 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
28 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
29 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019
30 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.019
31 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
32 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
33 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
34 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
35 0.016 0.015 0.015 0.015 0.014 0.014 0.014 0.013 0.013
36 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
37 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
38 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
39 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
40 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
41 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
42 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
43 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
44 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
45 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
46 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.018
47 0.017 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.018
48 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
49 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.018 0.018
50 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017
51 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
52 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
53 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
54 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
55 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017
56 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
57 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
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Table 9: Weight allocation by BIC for quantiles of interest for CPI Inlfation

Quantiles 0.1 0.2 0.3 0.4 0.
Model ID

0.6 0.7 0.8 0.9

ot

1 0.021 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.022
2 0.02 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021
3 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
4 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.018
5 0.019 0.019 0.019 0.018 0.018 0.018 0.018 0.017 0.017
6 0.02 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.02

7 0.02 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021
8
9

0.02 0.02 0.021 0.021 0.021 0.021 0.021 0.021 0.02

0.02 0.02 0.021 0.021 0.021 0.021 0.021 0.021 0.02
10 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
11 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
12 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
13 0.017 0.017 0.017 0.017 0.016 0.016 0.015 0.015 0.014
14 0.017 0.017 0.017 0.016 0.016 0.015 0.015 0.014 0.013
15 0.016 0.015 0.015 0.014 0.014 0.013 0.012 0.011 0.01
16 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
17 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
18 0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02
19 0.019 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
20 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
21 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.019 0.019
22 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.019
23 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.017 0.017
24 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016
25 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.015
26 0.018 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019
27 0.018 0.018 0.018 0.019 0.019 0.019 0.018 0.018 0.018
28 0.018 0.018 0.018 0.018 0.019 0.019 0.018 0.018 0.018
29 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019
30 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.019
31 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
32 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
33 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
34 0.017 0.016 0.016 0.017 0.017 0.017 0.016 0.016 0.016
35 0.015 0.015 0.014 0.014 0.014 0.013 0.013 0.012 0.012
36 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.018 0.018
37 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.018 0.018
38 0.017 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.018
39 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018 0.018
40 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
41 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.018
42 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017
43 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
44 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017
45 0.016 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015
46 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017
47 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017
48 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
49 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017
50 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.016
51 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
52 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
53 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
54 0.016 0.016 0.015 0.015 0.015 0.016 0.016 0.016 0.016
55 0.015 0.015 0.015 0.015 0.014 0.015 0.015 0.015 0.016
56 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.016 0.016
57 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.016 0.016
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Table 10: Weight allocation by QRIC for quantiles of interest for CPI Inlfation

0.9

0.8

0.7

0.6

0

0.2 0.3 0.4

0.1

Quantiles

Model ID

0.002 0

0.439

0.081 0

0.178

0.155 0.047 0.058 0.013 0.096
0.036

0.059

0.117
0.036
0.095

0

0.019

0.094

0.133

0.055

ococo

0
0
0

0.004
0.029 0.014
0.033

0.384

0.021

0.013
0.207

0 O~

0.036

0

0.048
0.13

0.402 0.385 0.771 0.844 0.435

0.73

0

0.703

10
11
12
13
14
15
16
17
18
19
20
21

0.263

0

0.156

0

0.025

0.05

0.001

0.062

0.002

0

0.476

0.455

ococo

ococo

22
23
24
25
26
27
28
29
30

0.001

0

0.009 0.004

0.297

0.04

0.183

0

0.063

31

32

33

34
35

0

0.008

36

37
38

ococo

o oo

ococo

o oo

o oo

o oo

o oo

ococo

o oo

39
40
41

42

43

44
45

46

47

48

49

50
51

52
53
54
55
56

57
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Table 11: Weight allocation by Cross-Validation for quantiles of interest for CPI Inlfation

0.9

0.8

0.7

0.6

0

0.2 0.3 0.4

0.1

Quantiles

Model ID

0

0.006

0.028

0

0.003 0.049

0.022

ococo

ococo

0 O~

0.073

0

0.172

10
11
12
13
14
15
16
17
18
19
20
21

0.01

0.113

0

0.005

0

0.002

0.002

0.065

0

0.032
0.01

0

0.055

0

0.032

0

0.007

22
23
24
25
26
27
28
29
30

0.042

0.029 0.01
0

0.012

0.001

0.062

0.011
0

0

0.002

0.005

0.056

0

0.048
0

0.128 0.158 0.104 0.553 0.082

0.041

0.013

0.038

0

0.024
0

0.029

0

0.002

0.319

31

32

0.004

33

34
35

0.042

0.05

0

0.011

36

0

0.001
0

37
38

0.122

0

0.102
0.051

ococo

o oo

0.007
0.005

39
40
41

42

43

0.001

0.004
0.01

44
45

0.048

0

0.107

0

0.074

0.127

46

0.04

0.046

0
0

0.057
0.062

0

0.041

47

0.022

0.276

0.022

48

0

0.048

49

0.016

50
51

0

0.034

0

0.086

0.004

0

0.059

52
53
54
55
56

0.096 0.043

0.278

0

0.122
0.009

0.001
0

0.262
0.003

0

0.121

0.016

0.042

0.23

0.064
0.136

0.043

0.239

0.377

0.074 0.842 0.107 0.476

0.554

57
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6 Forecast Performance Measures

Table 12: Empirical Coverage Rates for one-quarter-ahead forecasts of GDP growth

Quantile o p (1) Full  Equal AIC BIC QRIC Jackknife

() Model

0.10  0.0566 0.2075" 0.0566 0.0566 0.0566 0.0755 0.1698"
0.20  0.1698* 0.1321 0.1321  0.1321 0.1321  0.1509  0.1887*
0.30  0.2453** 0.0377  0.2642** 0.2642" 0.2642* 0.1321  0.0566
0.40  0.0566 0.0180* 0.0377 0.0566 0.0566 0.0566 0.0566
0.50  0.0000** 0.0189** 0.0755 0.0377 0.0566 0.0943 0.0189"
0.60  0.1132 00566 0.0943 0.1132 0.0943 0.0377  0.0566
0.70  0.0189** 0.0189** 0.0566 0.0377 0.0377 0.0189" 0.0000*
0.80  0.0000* 0.0566 0.0189** 0.0377 0.0377 0.0566 0.0189"
0.90  0.0755 0.0180* 0.0377 0.0377 0.0377 0.0189"* 0.0566

*Significantly different from nominal coverage at 10% significance level.
**Significantly different from nominal coverage at 5% significance level.

Table 13: Empirical Coverage Rates for one-quarter-ahead forecasts of CPI Inflation

Quantile QAR(1) Full Equal AIC BIC QRIC Jackknife

() Model

0.10 0.1509  0.1132 0.0755 0.0755  0.0755  0.1509  0.0755
0.20 0.0566  0.0189** 0.0377  0.0377  0.0377 0.0377  0.0377
0.30 0.0377  0.0566  0.0189** 0.0189** 0.0189** 0.0189** 0.0566
0.40 0.1132  0.0943 0.0566 0.0566  0.0566  0.0943  0.0566
0.50 0.0377 0.0566 0.1132 0.1132 0.1132  0.0377 0.0943
0.60 0.0566  0.0377  0.0566 0.0566  0.0377  0.0566  0.0377
0.70 0.1132  0.0755  0.0377 0.0377 0.0566  0.0566  0.0377
0.80 0.0755  0.0943 0.0755 0.1132 0.1132 0.0755  0.0566
0.90 0.1321  0.0755  0.1887** 0.1698* 0.1698* 0.1887** 0.1509

* Significantly different from nominal coverage at 10% significance level.
**Significantly different from nominal coverage at 5% significance level.
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Table 14: Final Prediction Error for one-quarter-ahead forecasts of GDP growth

Quantile

() QAR(1) Full Model Equal AIC BIC QRIC Jackknife
0.10 0.0025 0.0033 0.0033 0.0033 0.0033 0.0021 0.0028
0.20 0.0029 0.0033 0.0034 0.0033 0.0033 0.0025 0.0031
0.30 0.0033 0.0030 0.0034 0.0034 0.0034 0.0022 0.0025
0.40 0.0035 0.0034 0.0037 0.0037 0.0037 0.0026 0.0027
0.50 0.0035 0.0031 0.0038 0.0037 0.0037 0.0028 0.0031
0.60 0.0032 0.0032 0.0035 0.0035 0.0035 0.0029 0.0031
0.70 0.0028 0.0027 0.0031 0.0031 0.0031 0.0026 0.0026
0.80 0.0022 0.0020 0.0025 0.0025 0.0025 0.0019 0.0020
0.90 0.0016 0.0011 0.0017 0.0017 0.0017 0.0015 0.0013

Table 15: Final Prediction Error for one-quarter-ahead forecasts of CPI Inflation

Q“?Tn)“le QAR(1) Full Model Equal AIC BIC QRIC Jackknife
0.10 0.0010 0.0012  0.0013 0.0013 0.0013 0.0014  0.0013
0.20 0.0015 0.0020  0.0020 0.0020 0.0020 0.0020  0.0021
0.30 0.0019 0.0022  0.0025 0.0024 0.0025 0.0019  0.0022
0.40 0.0023 0.0022  0.0028 0.0027 0.0027 0.0024  0.0024
0.50 0.0022 0.0023  0.0029 0.0028 0.0028 0.0024  0.0024
0.60 0.0021 0.0021  0.0028 0.0028 0.0028 0.0022  0.0022
0.70 0.0020 0.0021  0.0028 0.0027 0.0027 0.0022  0.0021
0.80 0.0016 0.0020  0.0025 0.0023 0.0023 0.0020  0.0020
0.90 0.0012 0.0015  0.0017 0.0016 0.0016 0.0019  0.0019

31



6.1 Dataset

NR | FAME CODE | Series Name
1 D7BT Consumer Price Index: all items
2 ABMI Gross Domestic Product: chained volume measures
3 ABJR Household final consumption expenditure
4 CKYY [OP: Industry D: Manufacturing
5 CKYZ IOP: Industry E: Electricity, gas and water supply
6 CKZF IOP: Industry DF: Manufacturing of food, drink and tobacco
7 CKZG IOP: Industry DG: Manufacturing of chemicals and man-made fibres
8 GDBQ ESA95 Output Index: F:Construction
9 GDQH SA95 Output Industry: I: Transport storage and communication
10 | GDQS SA95 Output Industry: G-Q: Total
11 IKBK Balance of Payments: Trade in Goods and Services: Total exports
12 | IKBL Balance of Payments: Imports: Total Trade in Goods and Services
13 NMRY General Government: Final consumption expenditure
14 | NPQT Total Gross Fixed Capital Formation
Household final consumption expenditure: durable goods
15 ATQX Furniture and households
16 | ATRD Carpets and other floor coverings
17 | ATRR Telephone and telefax equipment
18 | ATRV Audio visual equipment
19 ATRZ Photo and cinema equipment and optical instruments
20 | ATSD Information processing equipment
21 LLKX All funrishing and household
22 | LLKY All health
23 LLKZ All transport
24 | LLLA All communication
25 LLLB All recreation and culture
26 LLLC All miscellaneous
27 | TMMI All purchases of vehicles
28 TMML Motor cars
29 | TMMZ Motor cycles
30 | TMNB Major durables for outdoor recreation
31 TMNO Bicycles
32 | UTID Total
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33 UWIC Therapeutic appliances and equipment
34 | XYJP Major house appliances
35 XYJR Major tools and equipment
36 | XYJT Musical instruments and major durables for indoor recreation
37 | ZAYM Jewelery, clocks and watches
Household final consumption expenditure: semi-durable goods
38 | ATQV Shoes and other footwear
39 | ATRF Household and textiles
40 | ATRJ Glassware, tableware and household utensils
41 ATSH Recording media
42 | ATSL Games, toys and hobbies
43 | ATSX Other personal effects
44 | AWUW Motor vehicle spares
45 CDZQ Books
46 | LLLZ All clothing and footwear
47 LLMC All recreation and culture
48 | LLMD All miscellaneous
49 UTIT Total
50 | XYJN Clothing materials
51 XYJO Other articles of clothing and clothing accessories
52 XYJQ Small eectric household appliances
53 XYJS Small tools and miscellaneous accessories
54 | XYJU Equipment for sport, camping etc
55 XYJX Electrical appliances for personal care
56 | ZAVK Garments
Household final consumption expenditure: non-durable goods
57 | ATSP Other products for personal care
58 | ATUA Materials for the maintenance and repair of the dwelling
59 | AWUX Gardens, plants and flowers
60 | CCTK Meat
61 CCTL Fish
62 CCTM Milk, cheese and eggs
63 | CCTN Oils and fats
64 | CCTO Fruit
65 CCTT Coffee,tea and cocoa
66 CCTU Mineral, water and soft drinks
67 | CCTY Vehicle fuels and lubricants
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68 | CCUA Electricity

69 CDZY Newspapers and periodicals

70 LLLL All housing, water, electricity, gas and other fuels

71 LLLM All furnishing and household goods

72 LLLN All health

73 | LLLO All transport

74 LLLP All recreation and culture

75 LLLQ All miscellaneous

76 LTZA Gas

77 | LTZC Liquid fuels

78 | TTAB Solid fuels

79 UTHW Wine, cider and sherry

80 | UTIL Total

81 UTXP Pharmaceutical Products

82 UTZN Water supply

83 | UUIS Spirits

84 | UUVG Beer

85 | UWBK All food

86 UWBL Bread and cereals

87 | UWFD Vegetables

88 UWFX Sugar and sweet products

89 | UWGH Food products n.e.c.

90 UWGI All non-alcoholic beverages

91 UWHO Non-durable household goods

92 UWIB Other medical products

93 UWKQ Pets and related products

94 XYJV Miscellaneous printed matter

95 | XYJW Stationary and drawing materials

96 | ZAKY All alcoholic beverages and otbacco

97 | ZWUN All food and non-alcoholic beverages

98 ZWUP Tobacco

99 | ZWUR All elctricity, gas and other fuels
Household final consumption expenditure: services

100 | AWUY Repair and hire of footwear

101 | AWUZ Services for the maintenance and reair of the dwelling

102 | AWVA Vehicle maintenance and repair

103 | AWVB Railways
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104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

AWVC
AWVD
AWVE
CCUO
CCVA
CCVM
CCVZ
GBFG
GBFK
GBFN
LLLR
LLLS
LLLT
LLLU
LLLV
LLLW
LLLX
LLLY
UTIP
UTMH
UTYF
UTYH
UTZX
UWHI
UWHK
UWHM
UWHN
UWIA
UWKO
UWKP
UWLD
ZAVQ
ZAWG
7AWI
7ZAWK
ZAWQ
ZAWS

Air

Sea and inland waterway

Other

Imputed rentals of owner-occupiers

Games of chance

Postal services

Hairdressing salons and personal grooming establishments
Actual rentals paid by tenants

All imputed rentals for housing

Other imputed rentals

All clothing and footwear

All housing, water, electricity, gas and other fuels
All funrishing and household

All health

Total transport

All communication

All recreation and culture

All miscellaneous

Total

Paramedical services

Hospital services

Life insurance

Sewerage collection

Clothing, repair and hire of clothing

Refuse collection

Repair of furniture, furnishings and floor coverings
Repair of household appliances

Domestic and household services

Repair of audio-visual, ohoto and information processing equipment
Maintenance of other major durables for recreation and culture
Veterinary and other services

All actual rentals for housing

All out-patient services

Medical services

Dental services

Other vehicle services

All transport services
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141 | ZAWU Road
142 | ZAWY Telephone and telefax services
143 | ZAXI All recreational and cultural services
144 | ZAXK Recreational and sporting activities
145 | ZAXM Cultural services
146 | ZAXS All restaurants and hotels
147 | ZAXU All catering services
148 | ZAXW Restaurants, cafes etc
149 | ZAYC Canteens
150 | ZAYE Accommodation services
151 | ZAYO Social protection
152 | ZAYQ All insurance
153 | ZAYS Insurance connected with the dwelling
154 | ZAYU Insurance connected with health
155 | ZAYW Insurance connected with transport
156 | ZAZA All financial services n.e.c.
157 | ZAZC All financial services other than FISIM
158 | ZAZE Other services n.e.c.
159 | ZWUT Education
Deflators

160 | ABJS Consumption
161 | FRAH RPI: Total Food
162 | ROYJ Wages
163 | YBGB GDP Deflator

Money Series
164 | M4ISA M4 Deposits PNFCs
165 | M4OSA M4 Deposits OFCs
166 | M4PSA M4 Deposits Households
167 | MALISA M4 Lending Total
168 | MALOSA M4 Lending PNFCs
169 | MALPSA M4 Lending Households

Asset Prices
170 Real nationwide house prices
171 | GDF Data FTSE All Share Index
172 | IMF Data Nominal Effective Exchange Rate (NEER)
173 | GDF Data Pounds to Euro
174 | GDF Data Pounds to US dollar
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175
176

GDF Data
GDF Data

Pounds to Canadian dollar

Pounds to Australian dollar
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